Bubbles in microfluidics—even those that appear to be negligibly small—are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas–liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.

1.
C.
Wang
,
M.
Liu
,
Z.
Wang
 et al, “
Point-of-care diagnostics for infectious diseases: From methods to devices
,”
Nano Today
37
,
101092
(
2021
).
2.
C. K.
He
and
C. H.
Hsu
, “
Microfluidic technology for multiple single-cell capture
,”
Biomicrofluidics
15
,
061501
(
2021
).
3.
E.
Saygili
,
E.
Yildiz-Ozturk
,
M. J.
Green
 et al, “
Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response
,”
Biomicrofluidics
15
,
021501
(
2021
).
4.
A.
Niculescu
,
C.
Chircov
,
A.
Birca
 et al, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
(
4
),
2011
(
2021
).
5.
V.
Mehta
and
S.
Rath
, “
3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare
,”
Bio-Des. Manuf.
4
(
2
),
311
343
(
2021
).
6.
T.
Ozer
,
C.
McMahon
,
C.
Henry
, “
Advances in paper-based analytical devices
,”
Annu. Rev. Anal. Chem.
13
,
85
109
(
2020
).
7.
Y.
Gao
,
M.
Wu
,
Y.
Lin
 et al, “
Trapping and control of bubbles in various microfluidic applications
,”
Lab Chip
20
(
24
),
4512
4527
(
2020
).
8.
I. H.
Song
and
T.
Park
, “
Connector-free world-to-chip interconnection for microfluidic devices
,”
Micromachines
10
,
166
(
2019
).
9.
F.
Forouzandeh
,
A.
Arevalo
,
A.
Alfadhel
 et al, “
A review of peristaltic micropumps
,”
Sens. Actuators, A
326
,
112602
(
2021
).
10.
K.
Guo
,
J.
Wang
,
M.
Pan
 et al, “
Experimental and numerical investigations of bubble formation in a flow-focusing device with temperature difference between gas and liquid phases
,”
Int. J. Heat Mass Transfer
187
,
122550
(
2022
).
11.
Q.
Wang
,
H.
Zhao
,
N.
Qi
 et al, “
Generation and stability of size-adjustable bulk nanobubbles based on periodic pressure change
,”
Sci. Rep.
9
,
1118
(
2019
).
12.
P.
Pontes
,
R.
Cautela
,
E.
Teodori
 et al, “
Effect of pattern geometry on bubble dynamics and heat transfer on biphilic surfaces
,”
Exp. Therm. Fluid Sci.
115
,
110088
(
2020
).
13.
B.
Deng
,
K.
Schroen
, and
J.
de Ruiter
, “
Effects of dynamic adsorption on bubble formation and coalescence in partitioned-EDGE devices
,”
J. Colloid Interface Sci.
602
,
316
324
(
2021
).
14.
S. H.
Lee
,
J.
Song
,
B.
Cho
 et al, “
Bubble-free rapid microfluidic PCR
,”
Biosens. Bioelectron.
126
,
725
733
(
2019
).
15.
D.
Brennan
,
B.
Glynn
,
G.
Keegan
 et al, “
Incorporating asymmetric PCR and microarray hybridization protocols onto an integrated microfluidic device, screening for the Escherichia coli ssrA gene
,”
Sens. Actuators, B
261
,
325
334
(
2018
).
16.
M.
Kolnik
,
L. S.
Tsimring
, and
J.
Hasty
, “
Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture
,”
Lab Chip
12
,
4732
4737
(
2012
).
17.
Y.
Zhang
,
Z.
Dou
,
J.
Veilleux
 et al, “
Modeling cavitation bubble dynamics in an autoinjector and its implications on drug molecules
,”
Int. J. Pharm.
608
,
121062
(
2021
).
18.
D.
Bento
,
S.
Lopes
,
I.
Maia
 et al, “
Bubbles moving in blood flow in a microchannel network: The effect on the local hematocrit
,”
Micromachines
11
,
344
(
2020
).
19.
E. A.
Brujan
,
H.
Takahira
, and
T.
Ogasawara
, “
Planar jets in collapsing cavitation bubbles
,”
Exp. Therm. Fluid Sci.
101
,
48
61
(
2019
).
20.
P.
Ma
,
S.
Wang
,
R.
Guan
 et al, “
An integrated microfluidic device for studying controllable gas embolism induced cellular responses
,”
Talanta
208
,
120484
(
2020
).
21.
T.
Liang
,
C.
Gu
,
Y.
Gan
 et al, “
Microfluidic chip system integrated with light addressable potentiometric sensor (LAPS) for real-time extracellular acidification detection
,”
Sens. Actuators, B
301
,
127004
(
2019
).
22.
J.
Zhang
,
Z.
Chen
,
Y.
Zhang
 et al, “
Construction of a high-fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation
,”
Lab Chip
21
,
3804
3818
(
2021
).
23.
J.
Zhou
,
B.
Qi
,
Y.
Zhang
 et al, “
Pool boiling heat transfer and bubble behavior on the treelike networks with wedge-shaped channels
,”
Int. Commun. Heat Mass Transfer
118
,
104811
(
2020
).
24.
K.
Zhang
,
Z. M.
Zhu
,
B. J.
Shang
 et al, “
Experimental investigation on flow regimes and transitions of steam-water two-phase flow in narrow rectangular horizontal channels
,”
Prog. Nucl. Energy.
131
,
103601
(
2021
).
25.
C.
Liu
,
T.
Kubo
,
T.
Naito
 et al, “
Controllable molecular sieving by copoly(poly(ethylene glycol) acrylate/poly(ethylene glycol) diacrylate)-based hydrogels via capillary electrophoresis for DNA fragments
,”
ACS Appl. Polym. Mater.
2
,
3886
3893
(
2020
).
26.
F.
Kitagawa
,
S.
Wakagi
,
Y.
Takegawa
 et al, “
Highly sensitive analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump combined with field-amplified sample injection
,”
Anal. Sci.
35
,
889
893
(
2019
).
27.
J.
Wijten
,
L.
Mandemaker
,
T. C.
Eeden
 et al, “
In situ study on Ni-Mo stability in a water-splitting device: Effect of catalyst substrate and electric potential
,”
ChemSusChem
13
,
3172
3179
(
2020
).
28.
L.
Rossrucker
,
K.
Mayrhofer
,
G.
Frankel
 et al, “
Investigating the real time dissolution of Mg using online analysis by ICP-MS
,”
J. Electrochem. Soc.
161
,
C115
C119
(
2014
).
29.
A.
Limbeck
,
C.
Wagner
,
B.
Lendl
 et al, “
Determination of water soluble trace metals in airborne particulate matter using a dynamic extraction procedure with on-line inductively coupled plasma optical emission spectrometric detection
,”
Anal. Chim. ACTA
750
,
111
119
(
2012
).
30.
X.
He
,
B. S.
Wang
,
J. X.
Meng
 et al, “
How to prevent bubbles in microfluidic channels
,”
Langmuir
37
,
2187
2194
(
2021
).
31.
J.
Zhang
,
J.
Liu
,
S.
Yu
 et al, “
Bubble growth and floating behavior during degassing process of molten steel/(N2, H2) system
,”
ISIJ Int.
60
,
470
480
(
2020
).
32.
Z.
Xiao
,
D.
Li
,
F.
Wang
 et al, “
Simultaneous removal of NO and SO2 with a new recycling micro-nano bubble oxidation-absorption process based on HA-Na
,”
Sep. Purif. Technol.
242
,
116788
(
2020
).
33.
C.
Duffy
,
A.
Kidd
,
S.
Francis
 et al, “
Chest drain aerosol generation in COVID-19 and emission reduction using a simple anti-viral filter
,”
BMJ Open Respir. Res.
7
,
e000710
(
2020
).
34.
K. K.
Lee
,
T.
Matsu-ura
,
A. E.
Rosselot
 et al, “
An integrated microfluidic bubble pocket for long-term perfused three-dimensional intestine-on-a-chip model
,”
Biomicrofluidics
15
,
014110
(
2021
).
35.
A. V.
Postnikov
, “
Collapse dynamics of hemispherical cavitation bubble in contact with a solid boundary
,”
Fluid Dyn.
55
,
454
464
(
2020
).
36.
K. S.
Lee
,
J. H.
Jung
,
B. H.
Ha
 et al, “
Optofluidic debubbling via a negative optical gradient force
,”
Appl. Phys. Lett.
105
,
071908
(
2014
).
37.
Y.
Shen
,
L.
Zhang
,
Y.
Wu
 et al, “
The role of the bubble–bubble interaction on radial pulsations of bubbles
,”
Ultrason. Sonochem.
73
,
105535
(
2021
).
38.
A.
Horesh
,
A.
Zigelman
, and
O.
Manor
, “
Stabilizing water films using surface acoustic waves
,”
Phys. Rev. Fluids
5
,
114002
(
2020
).
39.
A. M.
Skelley
and
J.
Voldman
, “
An active bubble trap and debubbler for microfluidic systems
,”
Lab Chip
8
,
1733
1737
(
2008
).
40.
W.
Zheng
,
Z.
Wang
,
W.
Zhang
 et al, “
A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells
,”
Lab Chip
10
,
2906
2910
(
2010
).
41.
J. D.
Cheng
and
H.
Jiang
, “
A debubbler for microfluidics utilizing air-liquid interfaces
,”
Appl. Phys. Lett.
95
,
214103
(
2009
).
42.
A. T.
Oratis
,
J. W. M.
Bush
,
H. A.
Stone
 et al, “
A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down
,”
Science
369
,
685
688
(
2020
).
43.
M. J.
Williams
,
N. K.
Lee
,
J. A.
Mylott
 et al, “
A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications
,”
Micromachines
10
,
360
(
2019
).
44.
R.
Tanabe-Yamagishi
,
Y.
Ito
,
H.
Wang
 et al, “
Observation of photoluminescence from YVO4: Eu3+ nanoparticles produced in laser ablation in water
,”
Appl. Phys. Express
13
,
075008
(
2020
).
45.
M.
Partanen
and
J.
Tulkki
, “
Covariant theory of light in a dispersive medium
,”
Phys. Rev. A.
104
,
023510
(
2021
).
46.
Y.
Jiang
,
H.
Lin
,
X.
Li
 et al, “
Hidden symmetry and invariance in optical forces
,”
ACS Photonics
6
,
2749
2756
(
2019
).
47.
G.
Ha
,
H.
Zheng
,
X.
Yu
 et al, “
Polarization effect on optical manipulation in a three-beam optical lattice
,”
Phys. Rev. A.
100
,
033817
(
2019
).
48.
H.
Zheng
,
H.
Chen
,
J.
Ng
 et al, “
Optical gradient force in the absence of light intensity gradient
,”
Phys. Rev. B
103
,
035103
(
2021
).
49.
N.
Murazawa
,
S.
Juodkazis
,
H.
Misawa
 et al, “
Laser trapping of deformable objects
,”
Opt. Express
15
,
13310
13317
(
2007
).
50.
S. I.
Koshoridze
and
Y. K.
Levin
, “
Bubble formation on a hydrophobic surface
,”
Tech. Phys.
65
,
846
850
(
2020
).
51.
S.
Juodkazis
,
N.
Murazawa
,
H.
Wakatsuki
 et al, “
Laser irradiation induced disintegration of a bubble in a glass melt
,”
Appl. Phys. A
87
,
41
45
(
2007
).
52.
Y.
Chen
,
T. H.
Wu
,
Y. C.
Kung
 et al, “
3D pulsed laser-triggered high-speed microfluidic channels for fluorescence-activated cell sorter
,”
Analyst
138
,
7308
7315
(
2013
).
53.
S.
Qiu
,
X.
Ma
,
B.
Huang
 et al, “
Numerical simulation of single bubble dynamics under acoustic standing waves
,”
Ultrason. Sonochem.
49
,
196
205
(
2018
).
54.
X.
Ma
,
B.
Huang
,
Y.
Li
 et al, “
Numerical simulation of single bubble dynamics under acoustic travelling waves
,”
Ultrason. Sonochem.
42
,
619
630
(
2018
).
55.
C.
Pothuri
,
M.
Azharudeen
, and
K.
Subramani
, “
Rapid mixing in microchannel using standing bulk acoustic waves
,”
Phys. Fluids
31
,
122001
(
2019
).
56.
S.
Li
and
M.
Chen
, “
Diamond shaped standing wave patterns of a two-dimensional Boussinesq system
,”
Appl. Numer. Math.
141
,
91
101
(
2019
).
57.
L.
Yang
,
C.
Ma
,
W.
Ren
 et al, “
Beat traveling wave principle and its verification on rotating ultrasonic motor
,”
J. Vib. Control
27
,
2354
2367
(
2021
).
58.
R. J.
Wood
,
J.
Lee
, and
M. J.
Bussemaker
, “
Disparities between sonoluminescence, sonochemiluminescence and dosimetry with frequency variation under flow
,”
Ultrason. Sonochem.
58
,
104645
(
2019
).
59.
K.
Mino
,
M.
Kataoka
,
K.
Yoshida
 et al, “
Ultrasound bubble filter using the flexural vibration of a cylinder for an extracorporeal circulation circuit
,”
Sens. Actuators, A
199
,
202
208
(
2013
).
60.
P.
Zhang
and
S.
Lin
, “
Study on bubble cavitation in liquids for bubbles arranged in a columnar bubble group
,”
Appl. Sci.
9
,
5292
(
2019
).
61.
T.
Li
,
Q.
Huang
,
S.
Li
 et al, “
Solid-driven mechanism and experimental study based on surface acoustic wave microfluidic
,”
AIP Adv.
10
,
125116
(
2020
).
62.
R. W.
Rambach
,
P.
Biswas
,
A.
Yadav
 et al, “
Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles
,”
Analyst
143
,
843
849
(
2018
).
63.
L.
Meng
,
F.
Cai
,
Q.
Jin
 et al, “
Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device
,”
Sens. Actuators, B
160
,
1599
1605
(
2011
).
64.
Y.
Hyun
,
K. Y.
Lee
,
D.
Jang
 et al, “
Bubble removal by electric and acoustic actuation for heat transfer enhancement
,”
AIP Adv.
11
,
085030
(
2021
).
65.
T.
Peng
,
M.
Zhou
,
S.
Yuan
 et al, “
Trapping stable bubbles in hydrophobic microchannel for continuous ultrasonic microparticle manipulation
,”
Sens. Actuators A
331
,
113045
(
2021
).
66.
J.
Rich
,
Z. H.
Tian
, and
T. J.
Huang
, “
Sonoporation: Past, present, and future
,”
Adv. Mater. Technol.
7
,
2100885
(
2021
).
67.
Y. Y.
Yang
,
Q. Y.
Li
,
X. S.
Guo
 et al, “
Mechanisms underlying sonoporation: Interaction between microbubbles and cells
,”
Ultrason. Sonochem.
67
,
105096
(
2020
).
68.
P. C.
Chu
, “
Ocean dynamic equations with the real gravity
,”
Sci. Rep.
11
,
3235
(
2021
).
69.
O. H.
Huttunen
,
M. H.
Behfar
,
J.
Hiitola-Keinänen
 et al, “
Electronic tattoo with transferable printed electrodes and interconnects for wireless electrophysiology monitoring
,”
Adv. Mater. Technol.
(published online).
70.
C.
Harito
,
R. C.
Lledo
,
D. V.
Bavykin
 et al, “
Patterning of worm-like soft polydimethylsiloxane structures using a TiO2 nanotubular array
,”
J. Appl. Polym. Sci.
137
,
49795
(
2020
).
71.
C.
Lochovsky
,
S.
Yasotharan
, and
A.
Günther
, “
Bubbles no more: In-plane trapping and removal of bubbles in microfluidic devices
,”
Lab Chip
12
,
595
601
(
2012
).
72.
S.
Park
,
H.
Cho
,
J.
Kim
 et al, “
Lateral degassing method for disposable film-chip microfluidic devices
,”
Membranes
11
,
316
(
2021
).
73.
C.
Huang
,
J. A.
Wippold
,
D.
Stratis-Cullum
 et al, “
Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures
,”
Biomed. Microdevices
22
,
76
(
2020
).
74.
T.
Christoforidis
,
C.
Ng
, and
D. T.
Eddington
, “
Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle
,”
Biomed. Microdevices
19
,
58
(
2017
).
75.
B.
Apffel
,
F.
Novkoski
,
A.
Eddi
 et al, “
Floating under a levitating liquid
,”
Nature
585
,
48
52
(
2020
).
76.
A.
Zhang
,
Z.
Guo
,
Q.
Wang
 et al, “
Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study
,”
Phys. Fluids
31
,
063106
(
2019
).
77.
W.
Zhou
,
Y.
Li
,
M.
Li
 et al, “
Bubble nucleation over patterned surfaces with different wettabilities: Molecular dynamics investigation
,”
Int. J. Heat Mass Transfer
136
,
1
9
(
2019
).
78.
D.
Terutsuki
,
H.
Mitsuno
, and
R.
Kanzaki
, “
3D-Printed bubble-free perfusion cartridge system for live-cell imaging
,”
Sensors
20
,
5779
(
2020
).
79.
D. H.
Park
,
H. J.
Jeon
,
M. J.
Kim
 et al, “
Development of a microfluidic perfusion 3D cell culture system
,”
J. Micromech. Microeng.
28
,
045001
(
2018
).
80.
J. H.
Sung
and
M. L.
Shuler
, “
Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap
,”
Biomed. Microdevices
11
,
731
738
(
2009
).
81.
Z.
Jian-Hong
,
T.
Bao-Hong
,
W.
Wei
 et al, “
Numerical simulation of deformation and rupture process of bubble in an oil film impacted by an oil droplet
,”
Acta Phys. Sin.
67
,
114701
(
2018
).
82.
Y.
Wang
and
Z.
Xin
, “
Vanishing viscosity and surface tension limits of incompressible viscous surface waves
,”
SIAM J. Math. Anal.
53
,
574
648
(
2021
).
83.
B.
Behdani
,
S.
Monjezi
,
J.
Zhang
 et al, “
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern
,”
Korean J. Chem. Eng.
37
,
2117
2123
(
2020
).
84.
X.
Li
,
Y.
Huang
,
X.
Chen
 et al, “
Breakup dynamics of low-density gas and liquid interface during Taylor bubble formation in a microchannel flow-focusing device
,”
Chem. Eng. Sci.
215
,
115473
(
2020
).
85.
J. D.
Stucki
and
O. T.
Guenat
, “
A microfluidic bubble trap and oscillator
,”
Lab Chip
15
,
4393
4397
(
2015
).
86.
K.
Keshmiri
,
H.
Huang
,
A. B.
Jemere
 et al, “
Investigation of capillary filling dynamics of multicomponent fluids in straight and periodically constricted microchannels
,”
Langmuir
36
,
6304
6313
(
2020
).
87.
C. M.
Wen
and
C. H.
Lin
, “
Tube-based DBD plasma treatment for improving the performance of the slippery coating layers on medical catheters
,”
IEEE Trans. Plasma Sci.
49
,
162
167
(
2021
).
88.
J. D.
Greenwood
,
Y.
Liu
,
D. E.
Busacker
 et al, “
Collection of gaseous and aerosolized samples using microfluidic devices with gas-liquid interfaces
,”
IEEE Sens. J.
10
,
952
959
(
2010
).
89.
J.
Huo
,
J.
Yong
,
F.
Chen
 et al, “
Trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces
,”
Adv. Mater. Interfaces
6
,
1900262
(
2019
).
90.
H.
Pang
,
K.
Tian
,
Y.
Li
 et al, “
Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of pullulan/PTFE emulsion for membrane deamination
,”
Sep. Purif. Technol.
274
,
118186
(
2021
).
91.
A. A.
Puranik
,
L. N.
Rodrigues
,
J.
Chau
 et al, “
Porous hydrophobic-hydrophilic composite membranes for direct contact membrane distillation
,”
J. Membrane Sci.
591
,
117225
(
2019
).
92.
H.
van Lintel
,
G.
Mernier
, and
P.
Renaud
, “
High-throughput micro-debubblers for bubble removal with sub-microliter dead volume
,”
Micromachines
3
,
218
224
(
2012
).
93.
C.
Liu
,
J. A.
Thompson
, and
H. H.
Bau
, “
A membrane-based, high-efficiency, microfluidic debubbler
,”
Lab Chip
11
,
1688
1693
(
2011
).
94.
S.
Manoharan
,
R. M.
Manglik
, and
M. A.
Jog
, “
Wetting and capillarity effects on bubble formation from orifice plates submerged in pools of water
,”
J. Heat Transfer
143
,
101602
(
2021
).
95.
D. D.
Meng
,
J.
Kim
, and
C. J.
Kim
, “
A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices
,”
J. Micromech. Microeng.
16
,
419
(
2006
).
96.
Y. J.
Chen
,
B.
Yu
,
Y.
Zou
 et al, “
Molecular dynamics studies of bubble nucleation on a grooved substrate
,”
Int. J. Heat Mass Transfer
158
,
119850
(
2020
).
97.
H. B.
Cheng
and
Y. W.
Lu
, “
Applications of textured surfaces on bubble trapping and degassing for microfluidic devices
,”
Microfluid. Nanofluid.
17
,
855
862
(
2014
).
98.
H.
Cho
,
J.
Kim
, and
K. H.
Han
, “
An assembly disposable degassing microfluidic device using a gas-permeable hydrophobic membrane and a reusable microsupport array
,”
Sens. Actuators, B
286
,
353
361
(
2019
).
99.
C.
Martinez-Cisneros
,
Z.
da Rocha
,
A.
Seabra
 et al, “
Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters
,”
Lab Chip
18
,
1884
1890
(
2018
).
100.
E.
Fu
and
L.
Wentland
, “
A survey of 3D printing technology applied to paper microfluidics
,”
Lab Chip
22
,
9
25
(
2021
).
101.
J.
Yong
,
J.
Zhuang
,
X.
Bai
 et al, “
Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser
,”
Nanoscale
13
,
10414
10424
(
2021
).
102.
A.
Butkute
and
L.
Jonusauskas
, “
3D manufacturing of glass microstructures using a femtosecond laser
,”
Micromachines
12
,
499
(
2021
).
103.
C. M.
Wang
,
C. Y.
Chen
,
W. S.
Liao
 et al, “
Enclosed paper-based analytical devices: Concept, variety, and outlook
,”
Anal. Chim. ACTA
1144
,
158
174
(
2021
).
104.
T. H.
Chung
and
B. R.
Dhar
, “
Paper-based platforms for microbial electrochemical cell-based biosensors: A review
,”
Biosens. Bioelectron.
192
,
113485
(
2021
).
105.
S. R.
Dabbagh
,
E.
Becher
,
F.
Ghaderinezhad
 et al, “
Increasing the packing density of assays in paper-based microfluidic devices
,”
Biomicrofluidics
15
,
011502
(
2021
).
106.
Y. Y.
Li
,
X. M.
Liu
,
Q.
Huang
 et al, “
Bubbles in microfluidics: An all-purpose tool for micromanipulation
,”
Lab Chip
21
,
1016
1035
(
2021
).
107.
B.
Saint-Michel
and
V.
Garbin
, “
Bubble dynamics for broadband microrheology of complex fluids
,”
Curr. Opin. Colloid Interface Sci.
50
,
101392
(
2020
).
108.
X. F.
Liu
,
J. Y.
Li
,
L. Y.
Zhang
 et al, “
Cell lysis based on an oscillating microbubble array
,”
Micromachines
11
,
288
(
2020
).
109.
H.
Hoefemann
,
S.
Wadle
,
N.
Bakhtina
 et al, “
Sorting and lysis of single cells by bubble jet technology
,”
Sens. Actuators, B
168
,
442
445
(
2012
).
110.
J.
Jeong
,
D.
Jang
,
D.
Kim
 et al, “
Acoustic bubble-based drug manipulation: Carrying, releasing and penetrating for targeted drug delivery using an electromagnetically actuated microrobot
,”
Sens. Actuators, A
306
,
111973
(
2020
).
111.
A.
Akbar
,
N.
Pillalamarri
,
S.
Jonnakuti
 et al, “
Artificial intelligence and guidance of medicine in the bubble
,”
Cell Biosci.
11
,
108
(
2021
).
112.
H. B.
Huang
,
C. H.
Dai
,
H.
Shen
 et al, “
Recent advances on the model, measurement technique, and application of single cell mechanics
,”
Int. J. Mol. Sci.
21
,
6248
(
2020
).
113.
Z. X.
Ge
,
L. G.
Dai
,
J. H.
Zhao
 et al, “
Bubble-based microrobots enable digital assembly of heterogeneous microtissue modules
,”
Biofabrication
14
,
025023
(
2022
).
114.
A. Y.
Shourabi
,
N.
Kashaninejad
, and
M. S.
Saidi
, “
An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery
,”
J. Sci. Adv. Mater. Devices
6
,
280
290
(
2021
).
115.
C.
Yang
,
Y.
Li
,
J.
Deng
 et al, “
Accurate, rapid and low-cost diagnosis of mycoplasma pneumoniae via fast narrow-thermal-cycling denaturation bubble-mediated strand exchange amplification
,”
Anal. Bioanal. Chem.
412
,
8391
8399
(
2020
).
You do not currently have access to this content.