Giardia is one of the most common waterborne pathogens causing around 200 × 106 diarrheal infections annually. It is of great interest to microbiological research as it is among the oldest known eukaryotic cells. Purifying Giardia from fecal samples for both research and diagnostic purposes presents one of the most difficult challenges. Traditional purification methods rely on density gradient centrifugation, membrane-based filtration, and sedimentation methods, which suffer from low recovery rates, high costs, and poor efficiency. Here, we report on the use of microfluidics to purify Giardia cysts from mouse feces. We propose a rigid spiral microfluidic device with a trapezoidal cross section to effectively separate Giardia from surrounding debris. Our characterizations reveal that the recovery rate is concentration-dependent, and our proposed device can achieve recovery rates as high as 75% with 0.75 ml/min throughput. Moreover, this device can purify Giardia from extremely turbid samples to a level where cysts are visually distinguishable with just one round of purification. This highly scalable and versatile 3D printed microfluidic device is then capable of further purifying or enhancing the recovery rate of the samples by recirculation. This device also has the potential to purify other gastrointestinal pathogens of similar size, and throughput can be significantly increased by parallelization.

1.
M. E.
Alvarado
and
M.
Wasserman
, “
Quick and efficient purification of Giardia intestinalis cysts from fecal samples
,”
Parasitol. Res.
99
(
3
),
300
302
(
2006
).
2.
WHO
, “
Microbial aspect
,” in
Guidelines for Drinking-Water Quality
, 4th ed. (World Health Organization,
2011
), Chap. 7.
3.
R. D.
Adam
, “
Biology of Giardia lamblia
,”
Clin. Microbiol. Rev.
14
(
3
),
447
475
(
2001
).
4.
G. S.
Logsdon
,
J. M.
Symons
,
R. L.
Hoye
, Jr.
, and
M. M.
Arozarena
, “
Alternative filtration methods for removal of Giardia cysts and cyst models
,”
J. Am. Water Works Assoc.
73
(
2
),
111
118
(
1981
).
5.
K. R.
Ganz
,
L.
Clime
,
J. M.
Farber
,
N.
Corneau
,
T.
Veres
, and
B. R.
Dixon
, “
Enhancing the detection of Giardia duodenalis cysts in foods by inertial microfluidic separation
,”
Appl. Environ. Microbiol.
81
(
12
),
3925
3933
(
2015
).
6.
D. S.
Zarlenga
and
J. M.
Trout
, “
Concentrating, purifying and detecting waterborne parasites
,”
Vet. Parasitol.
126
(
1–2
),
195
217
(
2004
).
7.
M. W.
Dryden
,
P. A.
Payne
, and
V.
Smith
, “
Accurate diagnosis of Giardia spp and proper fecal examination procedures
,”
Vet. Ther.
7
(
1
),
4
14
(
2006
).
8.
H.
Hooshyar
,
P.
Rostamkhani
,
M.
Arbabi
, and
M.
Delavari
, “
Giardia lamblia infection: Review of current diagnostic strategies
,”
Gastroenterol. Hepatol. Bed Bench.
12
(
1
),
3
(
2019
).
9.
C. L.
DiGiorgio
,
D. A.
Gonzalez
, and
C. C.
Huitt
, “
Cryptosporidium and Giardia recoveries in natural waters by using Environmental Protection Agency method 1623
,”
Appl. Environ. Microbiol.
68
(
12
),
5952
5955
(
2002
).
10.
K.
Shepherd
and
A.
Wyn-Jones
, “
An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water
,”
Appl. Environ. Microbiol.
62
(
4
),
1317
1322
(
1996
).
11.
Q.
Ramadan
,
L.
Christophe
,
W.
Teo
,
S.
Li
, and
H. H.
Feng
, “
Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation
,”
Anal. Chim. Acta
673
(
1
),
101
108
(
2010
).
12.
M. E.
Warkiani
,
L.
Chen
,
C.-P.
Lou
,
H.-B.
Liu
,
R.
Zhang
, and
H.-Q.
Gong
, “
Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter
,”
J. Membr. Sci.
369
(
1
),
560
568
(
2011
).
13.
L.
Chen
,
M. E.
Warkiani
,
H.-B.
Liu
, and
H.-Q.
Gong
, “
Polymeric micro-filter manufactured by a dissolving mold technique
,”
J. Micromech. Microeng.
20
(
7
),
075005
(
2010
).
14.
C. A.
Aya-Bonilla
,
G.
Marsavela
,
J. B.
Freeman
,
C.
Lomma
,
M. H.
Frank
,
M. A.
Khattak
 et al, “
Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device
,”
Oncotarget
8
(
40
),
67355
67368
(
2017
).
15.
T.
Kwon
,
H.
Prentice
,
J.
Oliveira
,
N.
Madziva
,
M. E.
Warkiani
,
J. P.
Hamel
 et al, “
Microfluidic cell retention device for perfusion of mammalian suspension culture
,”
Sci. Rep.
7
(
1
),
6703
(
2017
).
16.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M.
Ebrahimi Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip.
16
(
1
),
10
34
(
2016
).
17.
S. R.
Bazaz
,
A. A.
Mehrizi
,
S.
Ghorbani
,
S.
Vasilescu
,
M.
Asadnia
, and
M. E.
Warkiani
, “
A hybrid micromixer with planar mixing units
,”
RSC Adv.
8
(
58
),
33103
33120
(
2018
).
18.
D.
Morshedi Rad
,
M.
Alsadat Rad
,
R.
Razavi Bazaz
,
N.
Kashaninejad
,
D.
Jin
, and
M.
Ebrahimi Warkiani
, “
A comprehensive review on intracellular delivery
,”
Adv. Mater.
33
(
13
),
2005363
(
2021
).
19.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
(
1
),
1
52
(
2014
).
20.
Y.
Liu
,
D.
Hartono
, and
K.-M.
Lim
, “
Cell separation and transportation between two miscible fluid streams using ultrasound
,”
Biomicrofluidics
6
(
1
),
012802
(
2012
).
21.
R.
Lejard-Malki
,
J.
Follet
,
A.
Vlandas
, and
V.
Senez
, “
Selective electrohydrodynamic concentration of waterborne parasites on a chip
,”
Lab Chip
18
(
21
),
3310
3322
(
2018
).
22.
M.
Jimenez
and
H.
Bridle
, “
Microfluidics for effective concentration and sorting of waterborne protozoan pathogens
,”
J. Microbiol. Methods
126
,
8
11
(
2016
).
23.
N. M.
Pires
, “
Recovery of Cryptosporidium and Giardia organisms from surface water by counter-flow refining microfiltration
,”
Environ. Technol.
34
(
17–20
),
2541
2551
(
2013
).
24.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
, “
The upcoming 3D-printing revolution in microfluidics
,”
Lab Chip
16
(
10
),
1720
1742
(
2016
).
25.
S.
Razavi Bazaz
,
H. A.
Amiri
,
S.
Vasilescu
,
A.
Abouei Mehrizi
,
D.
Jin
,
M.
Miansari
, and
M.
Ebrahimi Warkiani
, “
Obstacle-free planar hybrid micromixer with low pressure drop
,”
Microfluid. Nanofluid.
24
(
8
),
61
(
2020
).
26.
J.
Shrestha
,
S. T.
Ryan
,
O.
Mills
,
S.
Zhand
,
S.
Razavi Bazaz
,
P. M.
Hansbro
 et al, “
A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium
,”
Biofabrication
13
(
3
),
035028
(
2021
).
27.
J.
Shrestha
,
M.
Ghadiri
,
M.
Shanmugavel
,
S.
Razavi Bazaz
,
S.
Vasilescu
,
L.
Ding
, and
M.
Ebrahimi Warkiani
, “
A rapidly prototyped lung-on-a-chip model using 3D-printed molds
,”
Organs Chip
1
,
100001
(
2019
).
28.
M.
Chai
,
S.
Razavi Bazaz
,
R.
Daiyan
,
A.
Razmjou
,
M.
Ebrahimi Warkiani
,
R.
Amal
, and
V.
Chen
, “
Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid
,”
Chem. Eng. J.
426
,
130856
(
2021
).
29.
S.
Razavi Bazaz
,
O.
Rouhi
,
M. A.
Raoufi
,
F.
Ejeian
,
M.
Asadnia
,
D.
Jin
, and
M.
Ebrahimi Warkiani
, “
3D printing of inertial microfluidic devices
,”
Sci. Rep.
10
(
1
),
5929
(
2020
).
30.
G.
Segre
and
A.
Silberberg
, “
Radial particle displacements in Poiseuille flow of suspensions
,”
Nature
189
(
4760
),
209
(
1961
).
31.
A.
Agarwal
,
A.
Mulgund
,
A.
Hamada
, and
M. R.
Chyatte
, “
A unique view on male infertility around the globe
,”
Reprod. Biol. Endocrinol.
13
,
37
(
2015
).
32.
M. R.
Condina
,
B. A.
Dilmetz
,
S.
Razavi Bazaz
,
J.
Meneses
,
M.
Ebrahimi Warkiani
, and
P.
Hoffmann
, “
Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry
,”
Lab Chip
19
(
11
),
1961
1970
(
2019
).
33.
A.
Mashhadian
and
A.
Shamloo
, “
Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel
,”
Anal. Chim. Acta
1083
,
137
149
(
2019
).
34.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
35.
M. E.
Warkiani
,
B. L.
Khoo
,
L.
Wu
,
A. K.
Tay
,
A. A.
Bhagat
,
J.
Han
, and
C. T.
Lim
, “
Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics
,”
Nat. Protoc.
11
(
1
),
134
148
(
2016
).
36.
A. S.
Rzhevskiy
,
S.
Razavi Bazaz
,
L.
Ding
,
A.
Kapitannikova
,
N.
Sayyadi
,
D.
Campbell
 et al, “
Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics
,”
Cancers
12
(
1
),
81
(
2020
).
37.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
(
21
),
3038
3046
(
2009
).
38.
M. A.
Raoufi
,
S.
Razavi Bazaz
,
H.
Niazmand
,
O.
Rouhi
,
M.
Asadnia
,
A.
Razmjou
, and
M.
Ebrahimi Warkiani
, “
Fabrication of unconventional inertial microfluidic channels using wax 3D printing
,”
Soft Matter
16
(
10
),
2448
2459
(
2020
).
39.
R.
Bazaz S
,
A.
Mashhadian
,
A.
Ehsani
,
S.
Saha
,
T.
Krueger
, and
M.
Ebrahimi Warkiani
, “
Computational inertial microfluidics: A review
,”
Lab Chip
20(6), 1023–1048 (
2020
).
40.
S.
Razavi Bazaz
,
N.
Kashaninejad
,
S.
Azadi
,
K.
Patel
,
M.
Asadnia
,
D.
Jin
, and
M.
Ebrahimi Warkiani
, “
Rapid soft lithography using 3D-printed molds
,”
Adv. Mater. Technol.
4
(
10
),
1900425
(
2019
).
41.
J. Y.
Han
,
B.
Krasniqi
,
J.
Kim
,
M.
Keckley
, and
D. L.
DeVoe
, “
Miniaturization of hydrocyclones by high-resolution 3D printing for rapid microparticle separation
,”
Adv. Mater. Technol.
5
,
1901105
(
2020
).
42.
S. P.
Johnston
,
M. M.
Ballard
,
M. J.
Beach
,
L.
Causer
, and
P. P.
Wilkins
, “
Evaluation of three commercial assays for detection of Giardia and Cryptosporidium organisms in fecal specimens
,”
J. Clin. Microbiol.
41
(
2
),
623
626
(
2003
).
43.
R.
Soares
and
T.
Tasca
, “
Giardiasis: An update review on sensitivity and specificity of methods for laboratorial diagnosis
,”
J. Microbiol. Methods
129
,
98
102
(
2016
).
44.
H. A.
El-Nahas
,
D. A.
Salem
,
A. A.
El-Henawy
,
H. I.
El-Nimr
,
H. A.
Abdel-Ghaffar
, and
A. M.
El-Meadawy
, “
Giardia diagnostic methods in human fecal samples: A comparative study
,”
Cytom. B Clin. Cytom.
84B
(
1
),
44
49
(
2013
).
45.
L.
Wang
and
D. S.
Dandy
, “
A microfluidic concentrator for cyanobacteria harvesting
,”
Algal. Res.
26
,
481
489
(
2017
).
46.
L.
Nicoud
,
M.
Lattuada
,
A.
Yates
, and
M.
Morbidelli
, “
Impact of aggregate formation on the viscosity of protein solutions
,”
Soft Matter
11
(
27
),
5513
5522
(
2015
).
47.
R.
Pittayanon
,
J. T.
Lau
,
Y.
Yuan
,
G. I.
Leontiadis
,
F.
Tse
,
M.
Surette
, and
P.
Moayyedi
, “
Gut microbiota in patients with irritable bowel syndrome—A systematic review
,”
Gastroenterology
157
(
1
),
97
108
(
2019
).
48.
A.
Tabrizi
,
L.
Khalili
,
A.
Homayouni-Rad
,
H.
Pourjafar
,
P.
Dehghan
, and
F.
Ansari
, “
Prebiotics, as promising functional food to patients with psychological disorders: A review on mood disorders, sleep, and cognition
,”
NeuroQuantology
17
(
6
),
1
9
(
2019
).

Supplementary Material

You do not currently have access to this content.