While in most cases, jaundice can be effectively treated using phototherapy, severe cases require exchange transfusion, a relatively risky procedure in which the neonate's bilirubin-rich blood is replaced with donor blood. Here, we examine extracorporeal blood treatment in a microfluidic photoreactor as an alternative to exchange transfusion. This new treatment approach relies on the same principle as phototherapy but leverages microfluidics to speed up bilirubin removal. Our results demonstrate that high-intensity light at 470 nm can be used to rapidly reduce bilirubin levels without causing appreciable damage to DNA in blood cells. Light at 470 nm was more effective than light at 505 nm. Studies in Gunn rats show that photoreactor treatment for 4 h significantly reduces bilirubin levels, similar to the bilirubin reduction observed for exchange transfusion and on a similar time scale. Predictions for human neonates demonstrate that this new treatment approach is expected to exceed the performance of exchange transfusion using a low blood flow rate and priming volume, which will facilitate vascular access and improve safety.

1.
M. J.
Maisels
and
A. F.
McDonagh
, “
Phototherapy for neonatal jaundice
,”
New Engl. J. Med.
358
,
920
928
(
2008
).
2.
V. K.
Bhutani
,
L.
Johnson
, and
E. M.
Sivieri
, “
Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns
,”
Pediatrics
103
,
6
14
(
1999
).
3.
S. M.
Shapiro
, “
Bilirubin toxicity in the developing nervous system
,”
Pediatr. Neurol.
29
,
410
421
(
2003
).
4.
T. B.
Newman
,
P.
Liljestrand
, and
G. J.
Escobar
, “
Combining clinical risk factors with serum bilirubin levels to predict hyperbilirubinemia in newborns
,”
Arch. Pediatr. Adolesc. Med.
159
,
113
119
(
2005
).
5.
M. W.
Kuzniewicz
 et al., “
Incidence, etiology, and outcomes of hazardous hyperbilirubinemia in newborns
,”
Pediatrics
134
,
504
509
(
2014
).
6.
T. M.
Slusher
 et al., “
Burden of severe neonatal jaundice: A systematic review and meta-analysis
,”
BMJ Paediatr. Open
1
,
e000105
(
2017
).
7.
G.
Agati
,
F.
Fusi
,
G.
Donzelli
, and
R.
Pratesi
, “
Quantum yield and skin filtering effects on the formation rate of lumirubin
,”
J. Photochem. Photobiol. B
18
,
197
203
(
1993
).
8.
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia
, “
Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation
,”
Pediatrics
114
,
297
316
(
2004
).
9.
Center, T. N. E. M. C. E.-b. P. AHRQ Evidence Report/Technology Assessment No.65, Management of Neonatal Hyperbilirubinemia. AHRQ (2002).
10.
S.
Sarkar
 et al., “
Nanoparticle-sensitized photodegradation of bilirubin and potential therapeutic application
,”
J. Phys. Chem. C
116
,
9608
9615
(
2012
).
11.
E. B.
Altintas
,
D.
Turkmen
,
V.
Karakoc
, and
A.
Denizli
, “
Efficient removal of bilirubin from human serum by monosize dye affinity beads
,”
J. Biomat. Sci Polym. E
22
,
957
971
(
2011
).
12.
M. E.
Avramescu
,
W. F. C.
Sager
,
Z.
Borneman
, and
M.
Wessling
, “
Adsorptive membranes for bilirubin removal
,”
J. Chromatogr. B
803
,
215
223
(
2004
).
13.
C. J. P.
Mullon
,
C. M.
Tosone
, and
R.
Langer
, “
Simulation of bilirubin detoxification in the newborn using an extracorporeal bilirubin oxidase reactor
,”
Pediatr. Res.
26
,
452
457
(
1989
).
14.
B. F.
Scharschmidt
,
P. H.
Plotz
,
P. D.
Berk
,
J. G.
Waggoner
, and
J.
Vergalla
, “
Removing substances from blood by affinity chromatography. II. removing bilirubin from the blood of jaundiced rats by hemoperfusion over albumin-conjugated agarose beads
,”
J. Clin. Invest.
53
,
786
795
(
1974
).
15.
S.
Sideman
 et al., “
In vivo hemoperfusion studies of unconjugated bilirubin removal by Ion-exchange resin
,”
Trans. Am. Soc. Artif. Intern. Organs
27
,
434
438
(
1981
).
16.
L.
Roca
 et al., “
Factors affecting the binding of bilirubin to serum albumins: Validation and application of the peroxidase method
,”
Pediatr. Res.
60
,
724
728
(
2006
).
17.
S.
Prahl
, see https://omlc.org/spectra/hemoglobin/summary.html for tabulated molar extinction coefficient for hemoglobin in water (1999).
18.
R. G.
Reed
, “
Kinetics of bilirubin binding to bovine serum albumin and the effects of palmitate
,”
J. Biol. Chem.
252
,
7483
7487
(
1977
).
19.
A. B.
Schreuder
 et al., “
Optimizing exchange transfusion for severe unconjugated hyperbilirubinemia: Studies in the Gunn rat
,”
PLoS One
8
,
e77179
(
2013
).
20.
F. J.
Cuperus
 et al., “
Beyond plasma bilirubin: The effects of phototherapy and albumin on brain bilirubin levels in Gunn rats
,”
J. Hepatol.
58
,
134
140
(
2013
).
21.
H.
Lee
and
M.
Blaufox
, “
Blood volume in the rat
,”
J. Nucl. Med.
26
,
72
76
(
1985
).
22.
A. F.
Mcdonagh
,
G.
Agati
,
F.
Fusi
, and
R.
Pratesi
, “
Quantum yields for laser photocyclization of bilirubin in the presence of human-serum albumin-dependence of quantum yield on excitation wavelength
,”
Photochem. Photobiol.
50
,
305
319
(
1989
).
23.
H. J.
Vreman
 et al., “
The effect of light wavelength on in vitro bilirubin photodegradation and photoisomer production
,”
Pediatr. Res.
85
,
865
873
(
2019
).
24.
E. H.
Kates
and
J. S.
Kates
, “
Anemia and polycythemia in the newborn
,”
Pediatr. Rev.
28
,
33
(
2007
).
25.
J. R.
Dormand
and
P. J.
Prince
, “
A family of embedded Runge-Kutta formulae
,”
J. Comput. Appl. Math.
6
,
19
26
(
1980
).
26.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
, “
Convergence properties of the Nelder-Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
,
112
147
(
1998
).
27.
M.
Amato
and
D.
Inaebnit
, “
Clinical usefulness of high intensity green light phototherapy in the treatment of neonatal jaundice
,”
Eur. J. Pediatr.
150
,
274
276
(
1991
).
28.
C.
Vecchi
,
G.
Donzelli
,
M.
Migliorini
, and
G.
Sbrana
, “
Green light in phototherapy
,”
Pediatr. Res.
17
,
461
463
(
1983
).
29.
C.
Vecchi
,
G.
Donzelli
,
G.
Sbrana
, and
R.
Pratesi
, “
Phototherapy for neonatal jaundice: Clinical equivalence of fluorescent green and “special” blue lamps
,”
J. Pediatr.
108
,
452
456
(
1986
).
30.
A. F.
McDonagh
,
G.
Agati
,
F.
Fusi
, and
R.
Pratesi
, “
Quantum yields for laser photocyclization of bilirubin in the presence of human serum albumin. Dependence of quantum yield on excitation wavelength
,”
Photochem. Photobiol.
50
,
305
319
(
1989
).
31.
J. R.
Chowdhury
,
R.
Kondapalli
, and
N. R.
Chowdhury
, “
Gunn rat: A model for inherited deficiency of bilirubin glucuronidation
,”
Adv. Vet. Sci. Comp. Med.
37
,
149
173
(
1993
).
32.
J.
Ramasethu
, in
Handbook of Pediatric Transfusion Medicine
, edited by
C. D.
Hillyer
,
R. G.
Straus
, and
N. L. C.
Luban
(
Academic Press
,
2004
), pp.
129
208
.
33.
H.
Okada
 et al., “
Bilirubin photoisomers in rhesus monkey serum
,”
J. Photochem. Photobiol. B
185
,
50
54
(
2018
).
34.
A.
Ontaneda
and
G. M.
Annich
, “
Novel surfaces in extracorporeal membrane oxygenation circuits
,”
Front. Med. (Lausanne)
5
,
321
(
2018
).

Supplementary Material

You do not currently have access to this content.