Single-cell level coculture facilitates the study of cellular interactions for uncovering unknown physiological mechanisms, which are crucial for the development of new therapies for diseases. However, efficient approaches for high-throughput deterministic pairing of single cells and traceable coculture remain lacking. In this study, we report a new microfluidic device, which combines hydrodynamic and recirculation flow captures, to achieve high-throughput and deterministic pairing of single cells in a microwell array for traceable coculture. Compared with the existing techniques, the developed device exhibits advantages with regard to pairing efficiency, throughput, determinacy, and traceability. Through repeating a two-step method, which sequentially captures single cells in a meandering channel and a microwell array, cell number and type can be easily controlled. Double and triple single-cell pairings have been demonstrated with an efficiency of 72.2% and 38.0%, respectively. Cellular engulfment using two breast cell lines is investigated on a developed microfluidic chip as a biological case study, in which the morphological characteristics and the incidence rate are analyzed. This research provides an efficient and reliable alternative for the coculture of single cells on the microfluidic platform for various biomedical applications, such as studying cellular engulfment and tumor sphere formation under single-cell pairing condition.

1.
W. A.
Lim
,
Nat. Rev. Mol. Cell Biol.
11
,
393
(
2010
).
2.
B. L. D. M.
Brücher
and
I. S.
Jamall
,
Cell. Physiol. Biochem.
34
,
213
(
2014
).
3.
A.
Burmeister
and
A.
Grünberger
,
Curr. Opin. Biotechnol.
62
,
106
(
2020
).
4.
Z.
Du
,
S.
Mi
,
X.
Yi
,
Y.
Xu
, and
W.
Sun
,
Biofabrication
10
, 034102 (
2018
).
5.
M.
Shipitsin
,
L. L.
Campbell
,
P.
Argani
,
S.
Weremowicz
,
N.
Bloushtain-Qimron
,
J.
Yao
,
T.
Nikolskaya
,
T.
Serebryiskaya
,
R.
Beroukhim
,
M.
Hu
,
M. K.
Halushka
,
S.
Sukumar
,
L. M.
Parker
,
K. S.
Anderson
,
L. N.
Harris
,
J. E.
Garber
,
A. L.
Richardson
,
S. J.
Schnitt
,
Y.
Nikolsky
,
R. S.
Gelman
, and
K.
Polyak
,
Cancer Cell
11
,
259
(
2007
).
6.
N. C.
Turner
and
J. S.
Reis-Filho
,
Lancet Oncol.
13
,
e178
(
2012
).
7.
W.
Espulgar
,
Y.
Yamaguchi
,
W.
Aoki
,
D.
Mita
,
M.
Saito
,
J. K.
Lee
, and
E.
Tamiya
,
Sens. Actuators B
207
,
43
(
2015
).
8.
K.
Ino
,
M.
Okochi
,
N.
Konishi
,
M.
Nakatochi
,
R.
Imai
,
M.
Shikida
,
A.
Ito
, and
H.
Honda
,
Lab Chip
8
,
134
(
2008
).
9.
T. Q.
Vu
,
R. M. B.
De Castro
, and
L.
Qin
,
Lab Chip
17
,
1009
(
2017
).
10.
T.
Luo
,
L.
Fan
,
R.
Zhu
, and
D.
Sun
,
Micromachines
10
,
104
(
2019
).
11.
S.
Cui
,
Y.
Liu
,
W.
Wang
,
Y.
Sun
, and
Y.
Fan
,
Biomicrofluidics
5
, 032003 (
2011
).
12.
S.
Sarkar
,
P.
Sabhachandani
,
D.
Stroopinsky
,
K.
Palmer
,
N.
Cohen
,
J.
Rosenblatt
,
D.
Avigan
, and
T.
Konry
,
Biomicrofluidics
10
,
054115
(
2016
).
13.
N.
Hu
,
J.
Yang
,
S.
Qian
,
S. W.
Joo
, and
X.
Zheng
,
Biomicrofluidics
5
,
034121
(
2011
).
14.
W.
He
,
L.
Huang
,
Y.
Feng
,
F.
Liang
,
W.
Ding
, and
W.
Wang
,
Biomicrofluidics
13
, 054109 (
2019
).
15.
C.
Wu
,
R.
Chen
,
Y.
Liu
,
Z.
Yu
,
Y.
Jiang
, and
X.
Cheng
,
Lab Chip
17
,
4008
(
2017
).
16.
W.
He
,
L.
Huang
, and
W.
Wang
,
in 22nd Int. Conf. Miniaturized Syst. Chem. Life Sci. (Chemical and Biological Microsystems Society, Taiwan, 2018), p. 1068.
17.
X.
Wang
,
S.
Chen
,
Y. T.
Chow
,
C. W.
Kong
,
R. A.
Li
, and
D.
Sun
,
RSC Adv.
3
,
23589
(
2013
).
18.
X.
Wang
,
S.
Chen
,
C. W.
Kong
,
R. A.
Li
, and
D.
Sun
, in
Proceedings of the IEEE International Conference on Robotics and Automation
(
IEEE
,
2013
), p.
2795
.
19.
X.
Wang
,
X.
Gou
,
S.
Chen
,
X.
Yan
, and
D.
Sun
,
J. Micromech. Microeng.
23
, 075006 (
2013
).
20.
F.
Guo
,
P.
Li
,
J. B.
French
,
Z.
Mao
,
H.
Zhao
,
S.
Li
,
N.
Nama
,
J. R.
Fick
,
S. J.
Benkovic
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
43
(
2015
).
21.
E. J.
Felton
,
C. R.
Copeland
,
C. S.
Chen
, and
D. H.
Reich
,
Lab Chip
12
,
3117
(
2012
).
22.
Y. C.
Chen
,
Y. H.
Cheng
,
H. S.
Kim
,
P. N.
Ingram
,
J. E.
Nor
, and
E.
Yoon
,
Lab Chip
14
,
2941
(
2014
).
23.
W.-H.
Tan
and
S.
Takeuchi
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
1146
(
2007
).
24.
Y.
Feng
,
L.
Huang
,
P.
Zhao
,
F.
Liang
, and
W.
Wang
,
Anal. Chem.
91
,
15204
(
2019
).
25.
X.
Tang
,
X.
Liu
,
P.
Li
,
F.
Liu
,
M.
Kojima
,
Q.
Huang
, and
T.
Arai
,
Anal. Chem.
92, 11607 (
2020
).
26.
S.
Hong
,
Q.
Pan
, and
L. P.
Lee
,
Integr. Biol.
4
,
374
(
2012
).
27.
A. M.
Skelley
,
O.
Kirak
,
H.
Suh
,
R.
Jaenisch
, and
J.
Voldman
,
Nat. Methods
6
,
147
(
2009
).
28.
F. D.
Delapierre
,
G.
Mottet
,
V.
Taniga
,
J.
Boisselier
,
J. L.
Viovy
, and
L.
Malaquin
,
Biofabrication
9
,
015015
(
2017
).
29.
L.
Huang
,
Y.
Chen
,
W.
Huang
, and
H.
Wu
,
Lab Chip
18
,
1113
(
2018
).
30.
Y.
Li
,
J. H.
Jang
,
C.
Wang
,
B.
He
,
K.
Zhang
,
P.
Zhang
,
T.
Vu
, and
L.
Qin
,
Adv. Biosyst.
1
,
1700085
(
2017
).
31.
L.
Li
,
H.
Wang
,
L.
Huang
,
S. A.
Michael
,
W.
Huang
, and
H.
Wu
,
Anal. Chem.
91
,
15908
(
2019
).
32.
H.
Babahosseini
,
T.
Misteli
, and
D. L.
Devoe
,
Lab Chip
19
,
493
(
2019
).
33.
R. M.
Schoeman
,
W. T. E.
Van Den Beld
,
E. W. M.
Kemna
,
F.
Wolbers
,
J. C. T.
Eijkel
, and
A.
Van Den Berg
,
Sci. Rep.
8
,
3714
(
2018
).
34.
T.
Luo
,
L.
Fan
,
Y.
Zeng
,
Y.
Liu
,
S.
Chen
,
Q.
Tan
,
R. H. W.
Lam
, and
D.
Sun
,
Lab Chip
18
,
1521
(
2018
).
35.
L.
Fan
,
T.
Luo
,
Z.
Guan
,
Y. T.
Chow
,
S.
Chen
,
T.
Wei
,
A.
Shakoor
,
R. H. W.
Lam
, and
D.
Sun
,
Biofabrication
12, 035005 (
2020
).
36.
M.
Overholtzer
,
A. A.
Mailleux
,
G.
Mouneimne
,
G.
Normand
,
S. J.
Schnitt
,
R. W.
King
,
E. S.
Cibas
, and
J. S.
Brugge
,
Cell
131
,
966
(
2007
).
37.
Q.
Sun
,
T.
Luo
,
Y.
Ren
,
O.
Florey
,
S.
Shirasawa
,
T.
Sasazuki
,
D. N.
Robinson
, and
M.
Overholtzer
,
Cell Res.
24
,
1299
(
2014
).
38.
G.
Kroemer
and
J. L.
Perfettini
,
Cell Res.
24
,
1280
(
2014
).
39.
Q.
Sun
,
E. S.
Cibas
,
H.
Huang
,
L.
Hodgson
, and
M.
Overholtzer
,
Cell Res.
24
,
1288
(
2014
).
40.
S.
Hu
,
G.
Liu
,
W.
Chen
,
X.
Li
,
W.
Lu
,
R. H. W.
Lam
, and
J.
Fu
,
Small
12
,
2300
(
2016
).

Supplementary Material

You do not currently have access to this content.