Many motile bacteria are propelled by the rotation of flagellar filaments. This rotation is driven by a membrane protein known as the stator-complex, which drives the rotor of the bacterial flagellar motor. Torque generation is powered in most cases by proton transit through membrane protein complexes known as stators, with the next most common ionic power source being sodium. Sodium-powered stators can be studied through the use of synthetic chimeric stators that combine parts of sodium- and proton-powered stator proteins. The most well studied example is the use of the sodium-powered PomA-PotB chimeric stator unit in the naturally proton-powered Escherichia coli. Here we designed a fluidics system at low cost for rapid prototyping to separate motile and non-motile populations of bacteria while varying the ionic composition of the media and thus the sodium-motive force available to drive this chimeric flagellar motor. We measured separation efficiencies at varying ionic concentrations and confirmed using fluorescence that our device delivered eightfold enrichment of the motile proportion of a mixed population. Furthermore, our results showed that we could select bacteria from reservoirs where sodium was not initially present. Overall, this technique can be used to implement the selection of highly motile fractions from mixed liquid cultures, with applications in directed evolution to investigate the adaptation of motility in bacterial ecosystems.

1.
J.-B.
Raina
,
V.
Fernandez
,
B.
Lambert
,
R.
Stocker
, and
J. R.
Seymour
,
Nat. Rev. Microbiol.
17
,
284
(
2019
).
2.
C. C.
Häse
and
B.
Barquera
,
Biochim. Biophys. Acta, Bioenerg.
1505
,
169
(
2001
).
3.
Y.-W.
Lai
,
P.
Ridone
,
G.
Peralta
,
M. M.
Tanaka
, and
M. A. B.
Baker
, “Evolution of the stator elements of rotary prokaryote motors,”
J. Bacteriol.
202
,
e00557
e005519
(
2020
).
4.
G.
Micali
and
R. G.
Endres
,
Curr. Opin. Microbiol.
30
,
8
(
2016
).
5.
O.
Scheler
,
W.
Postek
, and
P.
Garstecki
,
Curr. Opin. Biotechnol.
55
,
60
(
2019
).
6.
J. P.
Gurung
,
M.
Gel
, and
M. A. B.
Baker
,
Microb. Cell
7
,
66
(
2020
).
7.
F.
Altegoer
,
J.
Schuhmacher
,
P.
Pausch
, and
G.
Bange
,
Biotechnol. Genet. Eng. Rev.
30
,
49
(
2014
).
8.
F. W. Y.
Chiu
and
S.
Stavrakis
,
Electrophoresis
40
,
2860
(
2019
).
9.
V.
Gupta
,
M.
Sengupta
,
J.
Prakash
, and
B. C.
Tripathy
,
Basic and Applied Aspects of Biotechnology
(
Springer
,
2016
), p.
167
.
10.
A. J. L.
Morgan
,
L. H. S.
Jose
,
W. D.
Jamieson
,
J. M.
Wymant
,
B.
Song
,
P.
Stephens
,
D. A.
Barrow
, and
O. K.
Castell
,
PLoS One
11
,
e0152023
(
2016
).
11.
G.
Weisgrab
,
A.
Ovsianikov
, and
P. F.
Costa
,
Adv. Mater. Technol.
4
,
1900275
(
2019
).
12.
J. R.
Lake
,
K. C.
Heyde
, and
W. C.
Ruder
,
PLoS One
12
,
e0175089
(
2017
).
13.
M. I.
Islam
,
A.
Lin
,
Y.-W.
Lai
,
N. J.
Matzke
, and
M. A. B.
Baker
,
Front. Microbiol.
11
,
625837
(
2020
).
14.
A. B.
Shrirao
and
R.
Perez-Castillejos
,
Technology
6
(
1
),
1
23
(
2018
).
15.
L.
Dong
,
D.-W.
Chen
,
S.-J.
Liu
, and
W.
Du
,
Sci. Rep.
6
,
24192
(
2016
).
16.
H.
Naghili
,
H.
Tajik
,
K.
Mardani
,
S. M.
Razavi Rouhani
,
A.
Ehsani
, and
P.
Zare
, “Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests,”
Vet. Res. Forum
4
,
179
183
(
2013
); available at https://pubmed.ncbi.nlm.nih.gov/25653794/.
17.
T.
Ishikawa
,
T.
Shioiri
,
K.
Numayama-Tsuruta
,
H.
Ueno
,
Y.
Imai
, and
T.
Yamaguchi
,
Lab Chip
14
,
1023
(
2014
).
19.
M.
Wu
,
J. W.
Roberts
,
S.
Kim
,
D. L.
Koch
, and
M. P.
DeLisa
,
Appl. Environ. Microbiol.
72
,
4987
(
2006
).
20.
P.
Ridone
,
Y.
Sowa
, and
M. A. B.
Baker
, bioRxiv 2021.01.26.427765 (2021).
21.
V.
Gnyawali
,
M.
Saremi
,
M. C.
Kolios
, and
S. S. H.
Tsai
,
Biomicrofluidics
11
,
034104
(
2017
).
22.
D.
Vallejo
,
A.
Nikoomanzar
,
B. M.
Paegel
, and
J. C.
Chaput
,
ACS Synth. Biol.
8
,
1430
(
2019
).
23.
G.
Jing
,
A.
Zöttl
,
É
Clément
, and
A.
Lindner
,
Sci. Adv.
6
,
eabb2012
(
2020
).
24.
25.
N. J.
Fuller
and
N. A.
Licata
, arXiv:1609.09366 [Physics] (2017).
26.
S.
Naganawa
and
M.
Ito
,
Biomolecules
10
,
691
(
2020
).
27.
M.
Ito
and
Y.
Takahashi
,
Extremophiles
21
,
3
(
2017
).
28.
H. J. E.
Beaumont
,
J.
Gallie
,
C.
Kost
,
G. C.
Ferguson
, and
P. B.
Rainey
,
Nature
462
,
90
(
2009
).
29.
A.
Paulick
,
N. J.
Delalez
,
S.
Brenzinger
,
B. C.
Steel
,
R. M.
Berry
,
J. P.
Armitage
, and
K. M.
Thormann
,
Mol. Microbiol.
96
,
993
(
2015
).
30.
M.
Heo
,
A. L.
Nord
,
D.
Chamousset
,
E.
van Rijn
,
H. J. E.
Beaumont
, and
F.
Pedaci
,
Sci. Rep.
7
,
12583
(
2017
).
31.
M. M.
Salek
,
F.
Carrara
,
V.
Fernandez
,
J. S.
Guasto
, and
R.
Stocker
,
Nat. Commun.
10
,
1877
(
2019
).
32.
E.
Balleza
,
J. M.
Kim
, and
P.
Cluzel
,
Nat. Methods
15
,
47
(
2018
).

Supplementary Material

You do not currently have access to this content.