Embryo vitrification is a fundamental practice in assisted reproduction and fertility preservation. A key step of this process is replacing the internal water with cryoprotectants (CPAs) by transferring embryos from an isotonic to a hypertonic solution of CPAs. However, this applies an abrupt osmotic shock to embryos, resulting in molecular damages that have long been a source of concern. In this study, we introduce a standalone microfluidic system to automate the manual process and minimize the osmotic shock applied to embryos. This device provides the same final CPA concentrations as the manual method but with a gradual increase over time instead of sudden increases. Our system allows the introduction of the dehydrating non-permeating CPA, sucrose, from the onset of CPA-water exchange, which in turn reduced the required time of CPA loading for successful vitrification without compromising its outcomes. We compared the efficacy of our device and the conventional manual procedure by studying vitrified–warmed mouse blastocysts based on their re-expansion and hatching rates and transcription pattern of selected genes involved in endoplasmic reticulum stress, oxidative stress, heat shock, and apoptosis. While both groups of embryos showed comparable re-expansion and hatching rates, on-chip loading reduced the detrimental gene expression of cryopreservation. The device developed here allowed us to automate the CPA loading process and push the boundaries of cryopreservation by minimizing its osmotic stress, shortening the overall process, and reducing its molecular footprint.

1.
A.
Trounson
and
L.
Mohr
, “
Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo
,”
Nature
305
(
5936
),
707
709
(
1983
).
2.
V. A.
Kushnir
,
D. H.
Barad
,
D. F.
Albertini
,
S. K.
Darmon
, and
N.
Gleicher
, “
Systematic review of worldwide trends in assisted reproductive technology 2004–2013
,”
Reprod. Biol. Endocrinol.
15
(
1
),
6
(
2017
).
3.
M. J.
Taylor
,
B. P.
Weegman
,
S. C.
Baicu
, and
S. E.
Giwa
, “
New approaches to cryopreservation of cells, tissues, and organs
,”
Transfus. Med. Hemother.
46
(
3
),
197
215
(
2019
).
4.
G. D.
Elliott
,
S.
Wang
, and
B. J.
Fuller
, “
Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures
,”
Cryobiology
76
,
74
91
(
2017
).
5.
H.
Sieme
,
H.
Oldenhof
, and
W. F.
Wolkers
, “
Mode of action of cryoprotectants for sperm preservation
,”
Anim. Reprod. Sci.
169
,
2
5
(
2016
).
6.
F.
Gu
,
S.
Li
,
L.
Zheng
,
J.
Gu
,
T.
Li
,
H.
Du
 et al, “
Perinatal outcomes of singletons following vitrification versus slow-freezing of embryos: A multicenter cohort study using propensity score analysis
,”
Hum. Reprod.
34
(
9
),
1788
1798
(
2019
).
7.
L.
Rienzi
,
C.
Gracia
,
R.
Maggiulli
,
A. R.
LaBarbera
,
D. J.
Kaser
,
F. M.
Ubaldi
 et al, “
Oocyte, embryo and blastocyst cryopreservation in ART: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance
,”
Hum. Reprod. Update
23
(
2
),
139
155
(
2017
).
8.
K. S.
Richter
,
D. K.
Ginsburg
,
S. K.
Shipley
,
J.
Lim
,
M. J.
Tucker
,
J. R.
Graham
 et al, “
Factors associated with birth outcomes from cryopreserved blastocysts: Experience from 4,597 autologous transfers of 7,597 cryopreserved blastocysts
,”
Fertil. Steril.
106
(
2
),
354
362
(
2016
).
9.
Z. P.
Nagy
,
D.
Shapiro
, and
C.-C.
Chang
, “
Vitrification of the human embryo: A more efficient and safer in vitro fertilization treatment
,”
Fertil. Steril.
113
(
2
),
241
247
(
2020
).
10.
A.
Kresna
and
T. D.
Lestari
, “
Cryoprotectant combination ethylene glycol and propanediol on mice blastocyst viability post vitrification
,”
J. Phys.: Conf. Ser.
1146
,
012028
(
2019
).
11.
B. P.
Best
, “
Cryoprotectant toxicity: Facts, issues, and questions
,”
Rejuvenation Res.
18
(
5
),
422
436
(
2015
).
12.
J.
Lu
,
M.
Sheng
,
P.
Yao
,
C.
Ran
,
H.
Liu
,
L.
Chen
 et al, “
High concentration of glucose increases reactive oxygen species generation and apoptosis induced by endoplasmic reticulum stress pathway in rabbit corneal epithelial cells
,”
J. Ophthalmol.
2018
,
8234906
.
13.
J. I.
Burgos
,
M.
Morell
,
J. I. E.
Mariángelo
, and
M. V.
Petroff
, “
Hyperosmotic stress promotes endoplasmic reticulum stress-dependent apoptosis in adult rat cardiac myocytes
,”
Apoptosis
24
(
9-10
),
785
797
(
2019
).
14.
S.
Mullen
,
M.
Rosenbaum
, and
J.
Critser
, “
The effect of osmotic stress on the cell volume, metaphase II spindle and developmental potential of in vitro matured porcine oocytes
,”
Cryobiology
54
(
3
),
281
289
(
2007
).
15.
R.
Ruan
,
L.
Zou
,
S.
Sun
,
J.
Liu
,
L.
Wen
,
D.
Gao
 et al, “
Cell blebbing upon addition of cryoprotectants: A self-protection mechanism
,”
PloS One
10
(
4
),
e0125746
(
2015
).
16.
T.
Tharasanit
,
S.
Manee-In
,
S.
Buarpung
,
K.
Chatdarong
,
C.
Lohachit
, and
M.
Techakumphu
, “
Successful pregnancy following transfer of feline embryos derived from vitrified immature cat oocytes using ‘stepwise’cryoprotectant exposure technique
,”
Theriogenology
76
(
8
),
1442
1449
(
2011
).
17.
G.
Wu
,
B.
Jia
,
G.
Quan
,
D.
Xiang
,
B.
Zhang
,
Q.
Shao
 et al, “
Vitrification of porcine immature oocytes: Association of equilibration manners with warming procedures, and permeating cryoprotectants effects under two temperatures
,”
Cryobiology
75
,
21
27
(
2017
).
18.
K. F.
Sonnen
and
C. A.
Merten
, “
Microfluidics as an emerging precision tool in developmental biology
,”
Dev. Cell
48
(
3
),
293
311
(
2019
).
19.
Y.-J.
Ko
,
J.-H.
Maeng
,
S. Y.
Hwang
, and
Y.
Ahn
, “
Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm
,”
SLAS Technol. Transl. Life Sci. Innovation
23
(
6
),
507
515
(
2018
).
20.
S.
Bhagwat
,
S.
Sontakke
,
P.
Parte
, and
S.
Jadhav
, “
Chemotactic behavior of spermatozoa captured using a microfluidic chip
,”
Biomicrofluidics
12
(
2
),
024112
(
2018
).
21.
R.
Nosrati
,
P. J.
Graham
,
B.
Zhang
,
J.
Riordon
,
A.
Lagunov
,
T. G.
Hannam
 et al, “
Microfluidics for sperm analysis and selection
,”
Nat. Rev. Urol.
14
(
12
),
707
730
(
2017
).
22.
R.
Samuel
,
H.
Feng
,
A.
Jafek
,
D.
Despain
,
T.
Jenkins
, and
B.
Gale
, “
Microfluidic-based sperm sorting & analysis for treatment of male infertility
,”
Transl. Androl. Urol.
7
(
Suppl. 3
),
S336
(
2018
).
23.
W.
Iwasaki
,
K.
Yamanaka
,
D.
Sugiyama
,
Y.
Teshima
,
M. P.
Briones-Nagata
,
M.
Maeki
 et al, “
Simple separation of good quality bovine oocytes using a microfluidic device
,”
Sci. Rep.
8
(
1
),
14273
(
2018
).
24.
Z.
Chen
,
Z.
Zhang
,
X.
Guo
,
K.
Memon
,
F.
Panhwar
,
M.
Wang
 et al, “
Sensing cell membrane biophysical properties for detection of high quality human oocytes
,”
ACS Sens.
4
(
1
),
192
199
(
2018
).
25.
S.
Thapa
and
Y. S.
Heo
, “
Microfluidic technology for in vitro fertilization (IVF)
,”
JMST Adv.
1
,
1
11
(
2019
).
26.
L.
Weng
, “
IVF-on-a-chip: Recent advances in microfluidics technology for in vitro fertilization
,”
SLAS Technol.: Transl. Life Sci. Innovation
24
(
4
),
373
385
(
2019
).
27.
M.-S.
Lee
,
W.
Hsu
,
H.-Y.
Huang
,
H.-Y.
Tseng
,
C.-T.
Lee
,
C.-Y.
Hsu
 et al, “
Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip
,”
Biosens. Bioelectron.
150
,
111851
(
2020
).
28.
H.-Y.
Huang
,
H.-H.
Shen
,
C.-H.
Tien
,
C.-J.
Li
,
S.-K.
Fan
,
C.-H.
Liu
 et al, “
Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip
,”
PloS One
10
(
5
),
e0124196
(
2015
).
29.
S.
Xiao
,
J. R.
Coppeta
,
H. B.
Rogers
,
B. C.
Isenberg
,
J.
Zhu
,
S. A.
Olalekan
 et al, “
A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle
,”
Nat. Commun.
8
(
1
),
1
13
(
2017
).
30.
W.
Zhuo
,
H.
Lu
, and
P. T.
McGrath
, “
Microfluidic platform with spatiotemporally controlled micro-environment for studying long-term C. elegans developmental arrests
,”
Lab Chip
17
(
10
),
1826
1833
(
2017
).
31.
M. A.
Ferraz
,
H. H.
Henning
,
P. F.
Costa
,
J.
Malda
,
F. P.
Melchels
,
R.
Wubbolts
 et al, “
Improved bovine embryo production in an oviduct-on-a-chip system: Prevention of poly-spermic fertilization and parthenogenic activation
,”
Lab Chip
17
(
5
),
905
916
(
2017
).
32.
J. S.
Gnecco
,
T.
Ding
,
C.
Smith
,
J.
Lu
,
K. L.
Bruner-Tran
, and
K. G.
Osteen
, “
Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium
,”
Hum. Reprod.
34
(
4
),
702
714
(
2019
).
33.
Y.
Baert
,
I.
Ruetschle
,
W.
Cools
,
A.
Oehme
,
A.
Lorenz
,
U.
Marx
 et al, “
A multi-organ-chip co-culture of liver and testis equivalents: A first step toward a systemic male reprotoxicity model
,”
Hum. Reprod.
35
(
5
),
1029
1044
(
2020
).
34.
Y.
Zheng
,
G.
Zhao
,
Y.
Zhang
, and
R.
Gao
, “
On-chip loading and unloading of cryoprotectants facilitate cell cryopreservation by rapid freezing
,”
Sens. Actuators, B
255
,
647
656
(
2018
).
35.
D. G.
Pyne
,
J.
Liu
,
M.
Abdelgawad
, and
Y.
Sun
, “
Digital microfluidic processing of mammalian embryos for vitrification
,”
PloS One
9
(
9
),
e108128
(
2014
).
36.
Z.
Chen
,
K.
Memon
,
Y.
Cao
, and
G.
Zhao
, “
A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes
,”
Microsyst. Nanoeng.
6
(
1
),
1
(
2020
).
37.
Y. S.
Heo
,
H.-J.
Lee
,
B. A.
Hassell
,
D.
Irimia
,
T. L.
Toth
,
H.
Elmoazzen
 et al, “
Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform
,”
Lab Chip
11
(
20
),
3530
3537
(
2011
).
38.
Z.
Lei
,
D.
Xie
,
M. K.
Mbogba
,
Z.
Chen
,
C.
Tian
,
L.
Xu
 et al, “
A microfluidic platform with cell-scale precise temperature control for simultaneous investigation of the osmotic responses of multiple oocytes
,”
Lab Chip
19
(
11
),
1929
1940
(
2019
).
39.
M. R.
Freeman
,
M. S.
Hinds
,
K. G.
Howard
,
J. M.
Howard
, and
G. A.
Hill
, “
Guidance for elective single-embryo transfer should be applied to frozen embryo transfer cycles
,”
J. Assist. Reprod. Genet.
36
(
5
),
939
946
(
2019
).
40.
J.
Haas
,
J.
Meriano
,
C.
Laskin
,
Y.
Bentov
,
E.
Barzilay
,
R. F.
Casper
 et al, “
Clinical pregnancy rate following frozen embryo transfer is higher with blastocysts vitrified on day 5 than on day 6
,”
J. Assist. Reprod. Genet.
33
(
12
),
1553
1557
(
2016
).
41.
J.
Zhao
,
Y.
Yan
,
X.
Huang
,
L.
Sun
, and
Y.
Li
, “
Blastocoele expansion: An important parameter for predicting clinical success pregnancy after frozen-warmed blastocysts transfer
,”
Reprod. Biol. Endocrinol.
17
(
1
),
15
(
2019
).
42.
H.
Chen
,
C.
Chen
,
S.
Bai
,
Y.
Gao
,
G.
Metcalfe
,
W.
Cheng
 et al, “
Multiplexed detection of cancer biomarkers using a microfluidic platform integrating single bead trapping and acoustic mixing techniques
,”
Nanoscale
10
(
43
),
20196
20206
(
2018
).
43.
Z.
Chen
,
Y.
Zhu
,
D.
Xu
,
M. M.
Alam
,
L.
Shui
, and
H.
Chen
, “
Cell elasticity measurement using a microfluidic device with real-time pressure feedback
,”
Lab Chip
20
(
13
),
2343
2353
(
2020
).
44.
M.
Kuwayama
, “
Highly efficient vitrification for cryopreservation of human oocytes and embryos: The cryotop method
,”
Theriogenology
67
(
1
),
73
80
(
2007
).
45.
B.
Kovačič
and
V.
Vlaisavljević
, “Importance of blastocyst morphology in selection for transfer,” in Advances in Embryo Transfer (IntechOpen, 2012), pp. 161–177.
46.
J.
Jeon
,
N.
Choi
,
H.
Chen
,
J.-I.
Moon
,
L.
Chen
, and
J.
Choo
, “
SERS-based droplet microfluidics for high-throughput gradient analysis
,”
Lab Chip
19
(
4
),
674
681
(
2019
).
47.
N.
Garcia-Seyda
,
L.
Aoun
,
V.
Tishkova
,
V.
Seveau
,
M.
Biarnes-Pelicot
,
M.
Bajénoff
 et al, “
Microfluidic device to study flow-free chemotaxis of swimming cells
,”
Lab Chip
20
(
9
),
1639
1647
(
2020
).
48.
B.
Lee
,
H.-H.
Jeong
,
K.-K.
Kang
,
C.-S.
Lee
, and
S.-H.
Lee
, “
Improvement of a diffusion-based microfluidic chemotaxis assay through stable formation of a chemical gradient
,”
Chem. Eng. Sci.
202
,
130
137
(
2019
).
49.
X.
Zhou
,
Z.
Jiang
,
X. M.
Liang
,
J.
Liu
,
P.
Fang
,
Z.
Liu
 et al, “
Microfiltration-based sequential perfusion: A new approach for improved loading/unloading of cryoprotectants
,”
Sens. Actuators, B
312
,
127957
(
2020
).
50.
G.
Zhao
and
J.
Fu
, “
Microfluidics for cryopreservation
,”
Biotechnol. Adv.
35
(
2
),
323
336
(
2017
).
51.
Y.
Guo
,
Y.
Yang
,
X.
Yi
, and
X.
Zhou
, “
Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes
,”
Cryobiology
90
,
63
70
(
2019
).
52.
G.
Zhao
,
Z.
Zhang
,
Y.
Zhang
,
Z.
Chen
,
D.
Niu
,
Y.
Cao
 et al, “
A microfluidic perfusion approach for on-chip characterization of the transport properties of human oocytes
,”
Lab Chip
17
(
7
),
1297
1305
(
2017
).
53.
D.
Lai
,
J.
Ding
,
G.
Smith
,
G.
Smith
, and
S.
Takayama
, “
Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification
,”
Hum. Reprod.
30
(
1
),
37
45
(
2015
).
54.
S.
Friedler
,
L. C.
Giudice
, and
E. J.
Lamb
, “
Cryopreservation of embryos and ova
,”
Fertil. Steril.
49
(
5
),
743
764
(
1988
).
55.
A.
Ampaw
,
T. A.
Charlton
,
J. G.
Briard
, and
R. N.
Ben
, “
Designing the next generation of cryoprotectants—From proteins to small molecules
,”
Pept. Sci.
111
(
1
),
e24086
(
2019
).
56.
K. G. M.
Mahmoud
,
M.
El-Sokary
,
T.
Scholkamy
,
M.
Abou El-Roos
,
G.
Sosa
, and
M.
Nawito
, “
The effect of cryodevice and cryoprotectant concentration on buffalo oocytes vitrified at MII stage
,”
Anim. Reprod.
10
(
4
),
689
696
(
2013
).
57.
N.
Shardt
,
Z.
Chen
,
S. C.
Yuan
,
K.
Wu
,
L.
Laouar
,
N. M.
Jomha
 et al, “
Using engineering models to shorten cryoprotectant loading time for the vitrification of articular cartilage
,”
Cryobiology
92
,
180
188
(
2020
).
58.
G.
Rabbani
and
I.
Choi
, “
Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications
,”
Int. J. Biol. Macromol.
109
,
483
491
(
2018
).
59.
T.
Lamitina
,
C. G.
Huang
, and
K.
Strange
, “
Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression
,”
Proc. Natl. Acad. Sci. U.S.A.
103
(
32
),
12173
12178
(
2006
).
60.
M. E.
Murphy
, “
The HSP70 family and cancer
,”
Carcinogenesis
34
(
6
),
1181
1188
(
2013
).
61.
Y.
Zhao
,
Z.-H.
Du
,
M.
Talukder
,
J.
Lin
,
X.-N.
Li
,
C.
Zhang
 et al, “
Crosstalk between unfolded protein response and Nrf2-mediated antioxidant defense in Di-(2-ethylhexyl) phthalate-induced renal injury in quail (Coturnix japonica)
,”
Environ. Pollut.
242
,
1871
1879
(
2018
).
62.
P.
Bozaykut
,
N. K.
Ozer
, and
B.
Karademir
, “
Regulation of protein turnover by heat shock proteins
,”
Free Radic. Biol. Med.
77
,
195
209
(
2014
).
63.
H. H.
Kampinga
and
E. A.
Craig
, “
The HSP70 chaperone machinery: J proteins as drivers of functional specificity
,”
Nat. Rev. Mol. Cell Biol.
11
(
8
),
579
592
(
2010
).
64.
M.
Castillo-Martín
,
M.
Yeste
,
E.
Pericuesta
,
R.
Morató
,
A.
Gutiérrez-Adán
, and
S.
Bonet
, “
Effects of vitrification on the expression of pluripotency, apoptotic and stress genes in in vitro-produced porcine blastocysts
,”
Reprod. Fertil. Dev.
27
(
7
),
1072
1081
(
2015
).
65.
T.
Lin
,
J. E.
Lee
,
J. W.
Kang
,
H. Y.
Shin
,
J. B.
Lee
, and
D. I.
Jin
, “
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in mammalian oocyte maturation and preimplantation embryo development
,”
Int. J. Mol. Sci.
20
(
2
),
409
(
2019
).
66.
A.
Almanza
,
A.
Carlesso
,
C.
Chintha
,
S.
Creedican
,
D.
Doultsinos
,
B.
Leuzzi
 et al, “
Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications
,”
FEBS J.
286
(
2
),
241
278
(
2019
).
67.
C.
Hetz
,
K.
Zhang
, and
R. J.
Kaufman
, “
Mechanisms, regulation and functions of the unfolded protein response
,”
Nat. Rev. Mol. Cell Biol.
21
,
421
438
(
2020
).
68.
N.
Chaudhari
,
P.
Talwar
,
A.
Parimisetty
,
C.
Lefebvre d’Hellencourt
, and
P.
Ravanan
, “
A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress
,”
Front. Cell. Neurosci.
8
,
213
(
2014
).
69.
H. M. A.
Zeeshan
,
G. H.
Lee
,
H.-R.
Kim
, and
H.-J.
Chae
, “
Endoplasmic reticulum stress and associated ROS
,”
Int. J. Mol. Sci.
17
(
3
),
327
(
2016
).
70.
J. S.
Len
,
W. S. D.
Koh
, and
S.-X.
Tan
, “
The roles of reactive oxygen species and antioxidants in cryopreservation
,”
Biosci. Rep.
39
(8),
BSR20191601
(
2019
).
71.
Y.
Wang
,
R.
Branicky
,
A.
Noë
, and
S.
Hekimi
, “
Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling
,”
J. Cell Biol.
217
(
6
),
1915
1928
(
2018
).
72.
H.
Men
,
R. L.
Monson
,
J. J.
Parrish
, and
J. J.
Rutledge
, “
Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture
,”
Cryobiology
47
(
1
),
73
81
(
2003
).
73.
C.
Wang
and
R. J.
Youle
, “
The role of mitochondria in apoptosis
,”
Annu. Rev. Genet.
43
,
95
118
(
2009
).
74.
K. D.
Sullivan
,
M. D.
Galbraith
,
Z.
Andrysik
, and
J. M.
Espinosa
, “
Mechanisms of transcriptional regulation by p53
,”
Cell Death Differ.
25
(
1
),
133
143
(
2018
).
75.
F.
Sarmadi
,
P.
Kazemi
,
P.
Tirgar
,
S.
Fayazi
,
S.
Esfandiari
,
L.
Sotoodeh
 et al, “
Using natural honey as an anti-oxidant and thermodynamically efficient cryoprotectant in embryo vitrification
,”
Cryobiology
91
,
30
39
(
2019
).
76.
A. G.
Porter
and
R. U.
Jänicke
, “
Emerging roles of caspase-3 in apoptosis
,”
Cell Death Differ.
6
(
2
),
99
104
(
1999
).

Supplementary Material

You do not currently have access to this content.