As the heavy metal contamination is becoming worse, monitoring the heavy metal content in water or human body gets more and more important. In this research, a cadmium ion-selective field effect transistor (Cd-ISFET) for rapidly detecting cadmium ions has been developed and the mechanism of the sensor is also investigated in depth. Our Cd-ISFET sensor exhibits high sensitivity beyond the ideal Nernst sensitivity, wide dynamic range, low detection limit (∼10−11M), which is comparable with inductively coupled plasma mass spectrometry, and easy operation enabling people to detect cadmium ion by themselves. From the analysis of electrical measurement results, this Cd-ISFET is preferred to operate at the bias with the maximum transconductance of the FET to enhance the sensor signal. The AC impedance measurement is carried out to directly investigate the mechanism of an ion-selective membrane (ISM). From impedance results, the real part of the total impedance, which is the resistance, was shown to dominate the sensor signal. The potential drop across the ISM is caused by the heavy metal ion in the membrane, which is employed to the gate of the FET via an extended gate electrode. Cadmium ion detection in one drop of human serum with this sensor was demonstrated. This cost-effective and highly sensitive sensor is promising and can be used by anyone and anywhere to prevent people from cadmium poisoning.

1.
Agency for Toxic Substances and Disease Registry, “Toxicological profile for cadmium,” p. 1.
2.
K.
Boonprasert
,
P.
Kongjam
,
P.
Limpatanachote
,
R.
Ruengweerayut
, and
K.
Na-Bangchang
, “
Urinary and blood cadmium levels in relation to types of food and water intake and smoking status in a Thai population residing in cadmium-contaminated areas in Mae Sot
,”
Southeast Asian J. Trop. Med. Public Health
42
(
6
),
1521
1530
(
2011
).
3.
M.
Rafati Rahimzadeh
,
S.
Kazemi
, and
A. A.
Moghadamnia
, “
Cadmium toxicity and treatment: An update
,”
Caspian J. Intern. Med.
8
(
3
),
135
145
(
2017
).
4.
P. B.
Ryan
,
N.
Huet
, and
D. L.
MacIntosh
, “
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water
,”
Environ. Health Perspect.
108
(
8
),
731
735
(
2000
).
5.
S.
Völker
,
C.
Schreiber
, and
T.
Kistemann
, “
Drinking water quality in household supply infrastructure—A survey of the current situation in Germany
,”
Int. J. Hyg. Environ. Health
213
(
3
),
204
209
(
2010
).
6.
World Health Organization
,
Trace Elements in Human Nutrition and Health
(
WHO
,
Geneva
,
1996
), see http://whqlibdoc.who.int/publications/1996/9241561734_eng.pdf.
7.
B.
Ogboko
,
D.
Fisher
, and
R.
Swart
, “
Levels of lead and cadmium in hair and saliva of school children in Ceres district, South Africa
,”
Afr. J. Food, Agric. Nutr. Dev.
9
(
3
),
948
961
(
2009
).
8.
M. A.
Zazouli
,
M.
Shokrzadeh
,
H.
Izanloo
, and
S.
Fathi
, “
Cadmium content in rice and its daily intake in Ghaemshahr region of Iran
,”
Afr. J. Biotechnol.
7
(
20
),
3686
3689
(
2008
).
9.
A.
Menke
,
P.
Muntner
,
E. K.
Silbergeld
,
E. A.
Platz
, and
E.
Guallar
, “
Cadmium levels in urine and mortality among U.S. adults
,”
Environ. Health Perspect.
117
(
2
),
190
196
(
2009
).
10.
M.
Berglund
,
K.
Larsson
,
M.
Grandér
,
L.
Casteleyn
,
M.
Kolossa-Gehring
,
G.
Schwedler
,
A.
Castaño
,
M.
Esteban
,
J.
Angerer
,
H. M.
Koch
,
B. K.
Schindler
,
G.
Schoeters
,
R.
Smolders
,
K.
Exley
,
O.
Sepai
,
L.
Blumen
,
M.
Horvat
,
L. E.
Knudsen
,
T. A.
Mørck
,
A.
Joas
,
R.
Joas
,
P.
Biot
,
D.
Aerts
,
K.
De Cremer
,
I.
Van Overmeire
,
A.
Katsonouri
,
A.
Hadjipanayis
,
M.
Cerna
,
A.
Krskova
,
J. K.
Nielsen
,
J. F.
Jensen
,
P.
Rudnai
,
S.
Kozepesy
,
C.
Griffin
,
I.
Nesbitt
,
A. C.
Gutleb
,
M. E.
Fischer
,
D.
Ligocka
,
M.
Jakubowski
,
M. F.
Reis
,
S.
Namorado
,
I. R.
Lupsa
,
A. E.
Gurzau
,
K.
Halzlova
,
M.
Jajcaj
,
D.
Mazej
,
J. S.
Tratnik
,
A.
Lopez
,
A.
Cañas
,
A.
Lehmann
,
P.
Crettaz
,
E.
Den Hond
, and
E.
Govarts
, “
Exposure determinants of cadmium in European mothers and their children
,”
Environ. Res.
141
,
69
76
(
2015
).
11.
M. K.
Türkdoğan
,
F.
Kilicel
,
K.
Kara
,
I.
Tuncer
, and
I.
Uygan
, “
Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey
,”
Environ. Toxicol. Pharmacol.
13
(
3
),
175
179
(
2003
).
12.
F.
Hong
,
T.
Jin
, and
A.
Zhang
, “
Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population
,”
Biometals
17
(
5
),
573
580
(
2004
).
13.
D. M.
Ngo
,
R. L.
Hough
,
T. T.
Le
,
Y.
Nyberg
,
B. M.
Le
,
C. V.
Nguyen
,
M. K.
Nguyen
, and
I.
Oborn
, “
Assessing dietary exposure to cadmium in a metal recycling community in Vietnam: Age and gender aspects
,”
Sci. Total Environ.
416
,
164
171
(
2012
).
14.
L. A.
Alli
, “
Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria
,”
Interdiscip. Toxicol.
8
(
3
),
146
150
(
2015
).
15.
M. F.
McCarty
, “
Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure
,”
Med. Hypotheses
79
(
5
),
642
648
(
2012
).
16.
M.
Trzcinka-Ochocka
,
M.
Jakubowski
,
W.
Szymczak
,
B.
Janasik
, and
R.
Brodzka
, “
The effects of low environmental cadmium exposure on bone density
,”
Environ. Res.
110
(
3
),
286
293
(
2010
).
17.
A.
Engström
,
K.
Michaëlsson
,
Y.
Suwazono
,
A.
Wolk
,
M.
Vahter
, and
A.
Akesson
, “
Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women
,”
J. Bone Miner. Res.
26
(
3
),
486
495
(
2011
).
18.
L.
Järup
,
L.
Hellström
,
T.
Alfvén
,
M. D.
Carlsson
,
A.
Grubb
,
B.
Persson
,
C.
Pettersson
,
G.
Spång
,
A.
Schütz
, and
C. G.
Elinder
, “
Low level exposure to cadmium and early kidney damage: The OSCAR study
,”
Occup. Environ. Med.
57
(
10
),
668
672
(
2000
).
19.
T.
Alfvén
,
C. G.
Elinder
,
M. D.
Carlsson
,
A.
Grubb
,
L.
Hellström
,
B.
Persson
,
C.
Pettersson
,
G.
Spång
,
A.
Schütz
, and
L.
Järup
, “
Low-level cadmium exposure and osteoporosis
,”
J. Bone Miner. Res.
15
(
8
),
1579
1586
(
2000
).
20.
A.
Koyu
,
A.
Gokcimen
,
F.
Ozguner
,
D. S.
Bayram
, and
A.
Kocak
, “
Evaluation of the effects of cadmium on rat liver
,”
Mol. Cell. Biochem.
284
(
1–2
),
81
85
(
2006
).
21.
T.
Inaba
,
E.
Kobayashi
,
Y.
Suwazono
,
M.
Uetani
,
M.
Oishi
,
H.
Nakagawa
, and
K.
Nogawa
, “
Estimation of cumulative cadmium intake causing itai-itai disease
,”
Toxicol. Lett.
159
(
2
),
192
201
(
2005
).
22.
G.
Tyler
and
S.
Jobin Yvon
, ICP-OES, ICP-MS and AAS techniques compared, Technical Note 05.
23.
T.
Townsend
,
A.
A
,
K.
Miller
,
S.
McLean
, and
S.
Aldous
, “
The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS
,”
J. Anal. At. Spectrom.
13
(
11
),
1213
1219
(
1998
).
24.
E. A.
Group
, ICP-OES and ICP-MS Detection Limit Guidance, Application Note.
25.
S.
Plaza
,
Z.
Szigeti
,
M.
Geisler
,
E.
Martinoia
,
B.
Aeschlimann
,
D.
Günther
, and
E.
Pretsch
, “
Potentiometric sensor for the measurement of Cd2+ transport in yeast and plants
,”
Anal. Biochem.
347
(
1
),
10
16
(
2005
).
26.
E.
Bakker
and
E.
Pretsch
, “
Potentiometric sensors for trace-level analysis
,”
TrAC, Trends Anal. Chem.
24
(
3
),
199
207
(
2005
).
27.
V. K.
Gupta
,
S.
Chandra
, and
R.
Mangla
, “
Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor
,”
Electrochim. Acta
47
(
10
),
1579
1586
(
2002
).
28.
M.
Trojanowicz
,
P. W.
Alexander
, and
D.
Brynn Hibbert
, “
Flow-injection potentiometric determination of free cadmium ions with a cadmium ion-selective electrode
,”
Anal. Chim. Acta
370
(
2
),
267
278
(
1998
).
29.
P.
Bergveld
, “
Development, operation, and application of the Ion-sensitive field-effect transistor as a tool for electrophysiology
,”
IEEE Trans. Biomed. Eng.
19
(
5
),
342
351
(
1972
).
30.
A.
Cao
,
M.
Mescher
,
D.
Bosma
,
J. H.
Klootwijk
,
E. J. R.
Sudhölter
, and
L. C. D.
Smet
, “
Ionophore-containing siloprene membranes: Direct comparison between conventional Ion-selective electrodes and silicon nanowire-based field-effect transistors
,”
Anal. Chem.
87
(
2
),
1173
1179
(
2015
).
31.
K.
Schmoltner
,
J.
Kofler
,
A.
Klug
, and
E. J. W.
List-Kratochvil
, “
Electrolyte-gated organic field-effect transistor for selective reversible Ion detection
,”
Adv. Mater.
25
(
47
),
6895
6899
(
2013
).
32.
Y.
Alifragis
,
A.
Volosirakis
,
N. A.
Chaniotakis
,
G.
Konstantinidis
,
A.
Adikimenakis
, and
A.
Georgakilas
, “
Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures
,”
Biosens. Bioelectron.
22
(
12
),
2796
2801
(
2007
).
33.
S.-I.
Wakida
,
T.
Okumura
,
Y.
Shibutani
, and
J.
Liu
, “
Highly sensitive nitrate-sensing materials for ion-selective field-effect transistors for single-drop rain analysis
,”
Sens. Mater.
19
,
235
247
(
2007
).
34.
J.
Liu
,
X.
Wu
,
Z.
Zhang
,
S.
Wakida
, and
K.
Higashi
, “
Sulfate ion-selective field effect transistors prepared by solgel technique
,”
Sens. Actuators, B
66
(
1
),
216
218
(
2000
).
35.
P.
Li
,
B.
Liu
,
D.
Zhang
,
Y. E.
Sun
, and
J.
Liu
, “
Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing
,”
Appl. Phys. Lett.
109
(
15
),
153101
(
2016
).
36.
P.-C.
Chen
,
Y.-W.
Chen
,
I.
Sarangadharan
,
C.-P.
Hsu
,
C.-C.
Chen
,
S.-C.
Shiesh
,
G.-B.
Lee
, and
Y.-L.
Wang
, “
Editors’ choice—Field-effect transistor-based biosensors and a portable device for personal healthcare
,”
ECS J. Solid State Sci. Technol.
6
(
7
),
Q71
Q76
(
2017
).
37.
D.
Tholen
,
K.
Linnet
,
M.
Kondratovich
,
D.
Armbruster
,
P.
Garrett
,
R.
Jones
,
M. H.
Kroll
,
R.
Lequin
,
T.
Pankratz
,
G. A.
Scassellati
,
H.
Schimmel
, and
J.
Tsai
, “Protocols for determination of limits of detection and limits of quantitation,” Approved Guidelines, 2004.
38.
D. A.
Armbruster
and
T.
Pry
, “
Limit of blank, limit of detection and limit of quantitation
,”
Clin. Biochem. Rev.
29
(
Suppl. 1
),
S49
S52
(
2008
).

Supplementary Material

You do not currently have access to this content.