To develop a lab on a chip (LOC) integrated with both sensor and actuator functions, a novel two-in-one system based on optical-driven manipulation and sensing in a microfluidics setup based on a hydrogenated amorphous silicon (a-Si:H) layer on an indium tin oxide/glass is first realized. A high-intensity discharge xenon lamp functioned as the light source, a chopper functioned as the modulated illumination for a certain frequency, and a self-designed optical path projected on the digital micromirror device controlled by the digital light processing module was established as the illumination input signal with the ability of dynamic movement of projected patterns. For light-addressable potentiometric sensor (LAPS) operation, alternating current (AC)-modulated illumination with a frequency of 800 Hz can be generated by the rotation speed of the chopper for photocurrent vs bias voltage characterization. The pH sensitivity, drift coefficient, and hysteresis width of the Si3N4 LAPS are 52.8 mV/pH, −3.2 mV/h, and 10.5 mV, respectively, which are comparable to the results from the conventional setup. With an identical two-in-one system, direct current illumination without chopper rotation and an AC bias voltage can be provided to an a-Si:H chip with a manipulation speed of 20 μm/s for magnetic beads with a diameter of 1 μm. The collection of magnetic beads by this light-actuated AC electroosmosis (LACE) operation at a frequency of 10 kHz can be easily realized. A fully customized design of an illumination path with less decay can be suggested to obtain a high efficiency of manipulation and a high signal-to-noise ratio of sensing. With this proposed setup, a potential LOC system based on LACE and LAPS is verified with the integration of a sensor and an actuator in a microfluidics setup for future point-of-care testing applications.

1.
G.
Kokkinis
,
F.
Keplinger
, and
I.
Giouroudia
,
Biomicrofluids
7
,
054117
(
2013
).
2.
A.
Šalić
,
A.
Tušek
, and
B.
Zelić
,
J. Appl. Biomed.
10
,
137
(
2012
).
3.
S. A.
Peyman
,
A.
Iles
, and
N.
Pamme
,
Lab Chip
9
,
3110
(
2009
).
4.
U. M.
Jalal
,
G. J.
Jin
,
K. S.
Eom
,
M. H.
Kim
, and
J. S.
Shim
,
Bioelectrochemistry
122
,
221
(
2018
).
5.
A.
van Reenen
,
A. M.
de Jong
,
J. M. J.
den Toonder
, and
M. W. J.
Prins
,
Lab Chip
14
,
1966
(
2014
).
6.
J. S.
Choi
,
S.
Bae
,
K. H.
Kim
, and
T. S.
Seo
,
Biomicrofluidics
8
,
064119
(
2014
).
7.
D. M.
Rissin
,
C. W.
Kan
,
T. G.
Campbell
,
S. C.
Howes
,
D. R.
Fournier
 et al.,
Nat. Biotechnol.
28
(
6
),
595
(
2010
).
8.
C. P.
Gooneratne
,
I.
Giouroudi
, and
J.
Kosel
,
Sens. Lett.
10
,
770
(
2012
).
9.
S.
Rampini
,
P.
Li
, and
G. U.
Lee
,
Lab Chip
16
,
3645
(
2016
).
10.
A.
Rabehi
,
B.
Garlan
,
S.
Achtsnicht
,
H. J.
Krause
,
A.
Offenhäusser
 et al.,
Sensors
18
,
1747
(
2018
).
11.
M.
Iranmanesh
and
J.
Hulliger
,
Chem. Soc. Rev.
46
,
5925
(
2017
).
12.
M.
Wang
,
Q.
Wang
,
X.
Li
,
L.
Lu
,
S.
Du
 et al.,
Microchem. J.
159
,
105354
(
2020
).
13.
T.
Dong
,
X.
Ma
,
N.
Sheng
,
X.
Qi
,
Y.
Chu
 et al.,
Sens. Actuators B
327
,
128919
(
2021
).
14.
M. I. J.
Denison
,
S.
Raman
,
N.
Duraisamy
,
R. M.
Thangavelu
,
S. U. M.
Riyaz
 et al.,
RSC Adv.
5
,
99820
(
2015
).
15.
L.
Fabiani
,
M.
Saroglia
,
G.
Galatà
,
R.
De Santis
,
S.
Fillo
 et al.,
Biosens. Bioelectron.
171
,
112686
(
2021
).
16.
S.
Szunerits
,
T. N.
Saada
,
D.
Meziane
, and
R.
Boukherroub
,
Nanomaterials
10
,
1271
(
2020
).
17.
P.
Liu
,
P.
Jonkheijm
,
L. W. M. M.
Terstappen
and
M.
Stevens
,
Cancers
12
(
12
),
3525
(
2020
).
18.
Y.
Chen
,
X.
Chen
,
M.
Li
,
P.
Fan
,
B.
Wang
 et al.,
Biosens. Bioelectron.
171
,
112718
(
2021
).
19.
J.
Oh
,
R.
Hart
,
J.
Capurro
 et al.,
Lab Chip
9
,
62
(
2009
).
20.
H.
Mirzajani
,
C.
Cheng
,
J. N.
Wu
 et al.,
Sens. Actuators B
235
,
330
(
2016
).
21.
P. Y.
Chiou
,
A. T.
Ohta
, and
M. C.
Wu
,
Nature
436
,
370
(
2005
).
22.
J. K.
Valley
,
A.
Jamshidi
,
A. T.
Ohta
 et al.,
J. Microelectromech. Syst.
17
,
342
(
2008
).
23.
H.
Hwang
and
J. K.
Park
,
Lab Chip
11
,
33
(
2011
).
24.
J. L.
Hong
,
C. M.
Yang
,
P. Y.
Chu
,
W. P.
Chou
,
C. J.
Liao
 et al.,
Sens. Actuators B.
296
,
126610
(
2019
).
25.
P. Y.
Chu
,
C. J.
Liao
,
C. H.
Hsieh
,
H. M.
Wang
,
W. P.
Chou
 et al.,
Sens. Actuators B
283
,
621
(
2019
).
26.
P. Y.
Chu
,
C. H.
Hsieh
,
C. R.
Lin
, and
M. H.
Wu
,
Biosensors
10
(
6
),
65
(
2020
).
27.
P. Y.
Chiou
,
A. T.
Ohta
,
A.
Jamshidi
,
H. Y.
Hsu
, and
M. C.
Wu
,
J. Microelectromech. Syst.
17
,
525
(
2008
).
28.
W. F.
Liang
,
L. Q.
Liu
,
Y. C.
Wang
,
G. B.
Lee
, and
W. J.
Li
,
IEEE Trans. Nanotechnol.
17
,
1045
(
2018
).
29.
D.
Han
and
J. K.
Park
,
Lab Chip
16
,
1189
(
2016
).
30.
C. M.
Yang
,
Y. H.
Liao
,
C. H.
Chen
,
T. C.
Chen
,
C. S.
Lai
, and
D. G.
Pijanowska
,
Sens. Actuators B
236
,
1005
(
2016
).
31.
T.
Liang
,
Y.
Qiu
,
Y.
Gan
,
J.
Sun
,
S.
Zhou
 et al.,
Sensors
19
,
4294
(
2019
).
32.
T.
Yoshinobu
,
K. I.
Miyamoto
,
C. F.
Werner
,
A.
Poghossian
,
T.
Wagner
, and
M. J.
Schoning
,
Annu. Rev. Anal. Chem.
10
,
225
(
2017
).
33.
C. M.
Yang
,
T. W.
Chiang
,
Y. T.
Yeh
,
A.
Das
,
Y. T.
Lin
, and
T. C.
Chen
,
Sens. Actuators B
207
,
858
(
2015
).
34.
C. M.
Yang
,
W. Y.
Zeng
,
Y. P.
Chen
, and
T. C.
Chen
,
IEEE Sens. J.
18
,
2253
(
2018
).
35.
D.
Ha
,
N.
Hu
,
C. X.
Wu
,
D.
Kirsanov
,
A.
Legin
 et al.,
Sens. Actuators B
174
,
59
(
2012
).
36.
T.
Yoshinobu
,
H.
Iwasaki
,
Y.
Ui
,
K.
Furuichi
,
Y.
Ermolenko
 et al.,
Methods
37
,
94
(
2005
).
37.
J.
Liang
,
M.
Guan
,
G.
Huang
,
H.
Qiu
,
Z.
Chen
 et al.,
Mater. Sci. Eng. C
63
,
185
(
2016
).
38.
Y.
Jia
,
X. B.
Yin
,
J.
Zhang
,
S.
Zhou
,
M.
Song
, and
K. L.
Xing
,
Analyst
137
,
5866
(
2012
).
39.
C. S.
Wu
,
A.
Poghossian
,
T. S.
Bronder
, and
M. J.
Schöning
,
Sens. Actuators B
229
,
506
(
2016
).
40.
S.
Dantism
,
D.
Röhlen
,
T.
Selmer
,
T.
Wagner
,
P.
Wagner
, and
M. J.
Schöning
,
Biosens. Bioelectron.
139
,
11332
(
2019
).
41.
T.
Liang
,
C.
Gu
,
Y.
Gan
,
Q.
Wu
,
C.
He
 et al.,
Sens. Actuators B
301
,
127004
(
2019
).
42.
D.
Özsoylu
,
S.
Kizildag
,
M. J.
Schöning
, and
T.
Wagner
,
Phys. Med.
10
,
100030
(
2020
).
43.
T.
Wagner
,
W.
Vornholt
,
C. F.
Werne
,
T.
Yoshinobu
,
K. I.
Miyamoto
 et al.,
Phys. Med.
1
,
2
(
2016
).
44.
S.
Beleznai
,
G.
Mihajlik
,
I.
Maros
,
L.
Balázs
, and
P.
Richter
,
J. Phys. D: Appl. Phys.
41
,
115202
(
2008
).
45.
C. M.
Yang
,
W. Y.
Zeng
,
Y. P.
Chen
, and
T. C.
Chen
,
IEEE Sens. J.
18
(
6
),
2253
(
2018
).
46.
C. M.
Yang
,
W. Y.
Zeng
,
C. H.
Chen
,
Y. P.
Chen
, and
T. C.
Chen
,
Sens. Actuators B
258
,
1295
(
2018
).
47.
H. A.
Truong
,
C.
Fr. Werner
,
K. I.
Miyamoto
, and
T.
Yoshinobu
,
Phys. Status Solidi A
215
,
1700964
(
2018
).
48.
C. K.
Wei
,
H. Y.
Peng
,
Y. C.
Tsai
,
T. C.
Chen
, and
C. M.
Yang
,
Ceram. Int.
45
,
9074
(
2019
).
49.
J. C.
Wang
,
Y. R.
Ye
, and
Y. H.
Lin
J. Am. Ceram. Soc.
98
,
443
(
2015
).
50.
P. M.
Shaibani
,
H.
Etayash
,
S.
Naicker
,
K.
Kaur
, and
T.
Thundat
,
ACS Sens.
2
,
151
(
2017
).
51.
P. M.
Shaibani
,
K.
Jiang
,
G.
Haghighat
,
M.
Hassanpourfard
,
H.
Etayash
 et al.,
Sens. Actuators B
226
,
176
(
2016
).
52.
C. S.
Wu
,
A.
Poghossian
,
T. S.
Brondera
, and
M. J.
Schöning
,
Sens. Actuators B
229
,
506
(
2016
).
53.
G. W.
Shim
,
W. G.
Hong
,
J. H.
Cha
,
J. H.
Park
,
K. J.
Lee
, and
S. Y.
Choi
,
Adv. Mater.
32
,
1907166
(
2020
).
54.
W. H.
Kouider
and
A.
Belfar
,
Optik
222
,
165444
(
2020
).
55.
J. C.
Chou
,
Y. F.
Wang
, and
H. M.
Tsai
,
Jpn. J. Appl. Phys.
40
,
3975
(
2001
).
56.
J. K.
Valley
,
A.
Jamshidi
,
A. T.
Ohta
,
H. Y.
Hsu
, and
M. C.
Wu
,
J. Microelectromech. Syst.
17
,
342
(
2008
).
57.
P.
Gopinathan
,
N. J.
Chiang
,
C. H.
Wang
,
A.
Sinha
,
Y. C.
Tsai
 et al.,
Sens. Actuators B
322
,
128569
(
2020
).
58.
A.
Das
,
Y. H.
Lin
, and
C. S.
Lai
,
Sens. Actuators B
190
,
664
(
2014
).
59.
C. M.
Yang
,
C. H.
Chen
,
L. B.
Chang
, and
C. S.
Lai
,
IEEE Electron Device Lett.
37
(
11
),
1481
(
2016
).
60.
J.
Suzurikawaa
,
M.
Nakao
,
R.
Kanzaki
, and
H.
Takahashi
,
Sens. Actuators B
149
,
205
(
2010
).
61.
W. J.
Choi
,
S. H.
Kim
,
J.
Jang
, and
J. K.
Park
,
Microfluid. Nanofluid.
3
,
217
(
2007
).
62.
J. K.
Valley
,
S.
Neale
,
H. Y.
Hsu
,
A. T.
Ohta
,
A.
Jamshidi
, and
M. C.
Wu
,
Lab Chip
9
,
1714
(
2009
).
63.
S. M.
Yang
,
T. M.
Yu
,
H. P.
Huang
,
M. Y.
Ku
,
L.
Hsu
, and
C. H.
Liu
,
Opt. Lett.
35
,
1959
(
2010
).

Supplementary Material

You do not currently have access to this content.