In this experimental study, a portable biosensor was developed to detect β-human chorionic gonadotropin (β-hCG), which is extensively used in pregnancy tests and serves as a biomarker for ectopic pregnancy. The sensor used is an electric-double-layer field-effect transistor biosensor with the extended-gate design. Bias voltage is applied on the sensor to measure the resulting drain current signals. Gold electrode surface is functionally activated with an anti-β-hCG antibody to capture β-hCG protein. Fluorescence imaging technique is utilized to confirm the surface functionalization. The biosensor demonstrates a dynamically wide range of molecules as detection targets at very low sample concentrations, which shows the potential to detect ectopic pregnancy in very early stages and easily keep track of its periodic changes. It can be produced en masse and does not use additional labels/reagents or pre-processing techniques for the sample. This biosensor can significantly reduce the manufacturing costs and is comparable with the currently available commercial ß-hCG assays. It is suitable for early diagnosis of ectopic pregnancy with low cost and easy operation at home with urine samples.

1.
C. M.
Howles
, “
Role of LH and FSH in ovarian function
,”
Mol. Cell. Endocrinol.
162
,
25
(
2000
).
2.
A.
Szczerba
,
P.
Białas
,
P. P.
Piȩta
, and
A.
Jankowska
, “
hCG—Related molecules and their measurement
,”
Ginekol. Pol.
87
(
1
),
65
70
(
2016
).
3.
H.
Murray
,
H.
Baakdah
,
T.
Bardell
, and
T.
Tulandi
, “
Diagnosis and treatment of ectopic pregnancy
,”
CMAJ
173
(
8
),
905
912
(
2005
).
4.
K.
Fukutani
,
J. M.
Libby
,
W. B.
Panko
, and
P. T.
Scardino
, “
Human chorionic gonadotropin detected in urinary concentrates from patients with malignant tumors of the testis, prostate, bladder, ureter and kidney
,”
J. Urol.
129
(
1
),
74
76
(
1983
).
5.
U. H.
Stenman
and
H.
Alfthan
, “
Determination of human chorionic gonadotropin
,”
Best Pract. Res. Clin. Endocrinol. Metab.
27
(
6
),
783
793
(
2013
).
6.
L.
Sisinni
and
M.
Landriscina
, “
The role of human chorionic gonadotropin as tumor marker: Biochemical and clinical aspects
,” in
Advances in Experimental Medicine and Biology
(Springer,
2015
).
7.
S.
Menon
,
J.
Colins
, and
K. T.
Barnhart
, “
Establishing a human chorionic gonadotropin cutoff to guide methotrexate treatment of ectopic pregnancy: A systematic review
,”
Fertil. Steril.
87
,
481
(
2007
).
8.
Guideline to HCG Levels During Pregnancy
(
American Pregnancy Association
,
2017
).
9.
E. S.
Constance
and
M. B.
Moravek
, “
Diagnosis and management of ectopic pregnancy
,” in
Handbook of Gynecology
(Springer,
2017
).
10.
K.
Visconti
and
N.
Zite
, “
hCG in ectopic pregnancy
,”
Clin. Obstet. Gynecol.
55
(
2
),
410
417
(
2012
).
11.
E.
Kirk
,
C.
Bottomley
, and
T.
Bourne
, “
Diagnosing ectopic pregnancy and current concepts in the management of pregnancy of unknown location
,”
Hum. Reprod. Update
20
,
250
(
2014
).
12.
Ectopic pregnancy and hCG
,”
South African Med. J.
57
(
22
),
887
888
(
1980
).
13.
N.
Kadar
,
B. V.
Caldwell
, and
R.
Romero
, “
A method of screening for ectopic pregnancy and its indications
,”
Obstet. Gynecol.
58
,
162
(
1981
).
14.
J. E.
Buster
, “
Ectopic pregnancy
,” in
The Endometrium Molecular, Cellular and Clinical Perspectives
, 2nd ed. (CRC Press,
2008
).
15.
K. M.
Seow
,
L. W.
Huang
,
Y. H.
Lin
,
M. Y. S.
Lin
,
Y. L.
Tsai
, and
J. L.
Hwang
, “
Cesarean scar pregnancy: Issues in management
,”
Ultrasound Obstet. Gynecol.
23
,
247
(
2004
).
16.
T. G.
Stovall
,
F. W.
Ling
, and
J. E.
Buster
, “
Outpatient chemotherapy of unruptured ectopic pregnancy
,”
Fertil. Steril.
51
,
435
(
1989
).
17.
E.
Kirk
, “
Ultrasound in the diagnosis of ectopic pregnancy
,”
Clin. Obstet. Gynecol.
55
,
395
(
2012
).
18.
M.
Kaisti
, “
Detection principles of biological and chemical FET sensors
,”
Biosensors Bioelectron.
98
,
437
(
2017
).
19.
R.
Ramachandran
 et al., “
A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules
,”
Inorg. Chem. Front.
6
,
3418
(
2019
).
20.
ACS sustainable chemistry & engineering
,”
Chem. Eng. News Arch
. (2012).
21.
J.-H.
Ahn
,
J.
Yun
,
Y.-K.
Choi
, and
I.
Park
, “
Palladium nanoparticle decorated silicon nanowire field-effect transistor with side-gates for hydrogen gas detection
,”
Appl. Phys. Lett.
104
,
013508
(
2014
).
22.
M.
Sainato
,
L. M.
Strambini
,
S.
Rella
,
E.
Mazzotta
, and
G.
Barillaro
, “
Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching
,”
ACS Appl. Mater. Interfaces
7
(
13
),
7136
7145
(
2015
).
23.
F.
Patolsky
,
G.
Zheng
, and
C. M.
Lieber
, “
Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species
,”
Nat. Protoc.
1
(
4
),
1711
1724
(
2006
).
24.
G.
Barillaroa
,
G. M.
Lazzerini
, and
L. M.
Strambini
, “
Modeling of porous silicon junction field effect transistor gas sensors: Insight into NO2 interaction
,”
Appl. Phys. Lett.
96
,
162105
(
2010
).
25.
M. Z.
Bazant
,
K.
Thornton
, and
A.
Ajdari
, “
Diffuse-charge dynamics in electrochemical systems
,”
Phys. Rev. E
70
,
021506
(
2004
).
26.
L. M.
Fu
,
H. H.
Hou
,
P. H.
Chiu
, and
R. J.
Yang
, “
Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review
,”
Electrophoresis
39
(
2
),
289
310
(
2018
).
27.
G.
Zheng
,
F.
Patolsky
,
Y.
Cui
,
W. U.
Wang
, and
C. M.
Lieber
, “
Multiplexed electrical detection of cancer markers with nanowire sensor arrays
,”
Nat. Biotechnol.
23
,
1294
(
2005
).
28.
E.
Stern
 et al., “
Label-free biomarker detection from whole blood
,”
Nat. Nanotechnol.
5
,
138
(
2010
).
29.
G. S.
Kulkarni
and
Z.
Zhong
, “
Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor
,”
Nano Lett.
12
,
719
(
2012
).
30.
L. J.
Cruz
,
P. J.
Tacken
,
R.
Fokkink
, and
C. G.
Figdor
, “
The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells
,”
Biomaterials
32
,
6791
(
2011
).
31.
N. G.
Welch
,
J. A.
Scoble
,
B. W.
Muir
, and
P. J.
Pigram
, “
Orientation and characterization of immobilized antibodies for improved immunoassays (Review)
,”
Biointerphases
12
,
02D301
(
2017
).
32.
A.
Gust
 et al., “
A starting point for fluorescence-based single-molecule measurements in biomolecular research
,”
Molecules
19
,
15824
15865
(
2014
).
33.
E.
Layden
and
M.
Madhra
, “
Ectopic pregnancy
,”
Obstet. Gynaecol. Reprod. Med.
19
,
15824
(
2020
).
34.
M.
Elimelech
,
J.
Gregory
,
X.
Jia
, and
R. A.
Williams
, “
Electrical properties of interfaces
,”
Part. Depos. Aggreg.
32
,
9
(
1995
).
35.
M.
Khademi
and
D. P. J.
Barz
, “
Structure of the electrical double layer revisited: Electrode capacitance in aqueous solutions
,”
Langmuir
36
(
16
),
4250
4260
(
2020
).
36.
P.
Ir
,
P. B.
Em
, and
F.
Ee
, “ISFET, theory and practice,” in IEEE Sensor Conference, October 2003, Toronto (IEEE, 2003), pp. 1–26.
37.
G.
Sposito
, “
Gouy-Chapman theory
,” in
Encyclopedia of Earth Sciences Series
(Springer,
2018
).
38.
K. I.
Chen
,
B. R.
Li
, and
Y. T.
Chen
, “
Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation
,”
Nano Today
6
,
131
(
2011
).
39.
C. H.
Chu
 et al., “
Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum
,”
Sci. Rep.
7
(
1
),
1
15
(
2017
).
40.
I.
Sarangadharan
,
A.
Regmi
,
Y. W.
Chen
,
C. P.
Hsu
,
P. C.
Chen
,
W. H.
Chang
,
G. Y.
Lee
,
J. I.
Chyi
,
S. C.
Shiesh
,
G. B.
Lee
, and
Y. L.
Wang
, “
High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) biosensors
,”
Biosens. Bioelectron.
100
,
282
(
2018
).
41.
I.
Sarangadharan
,
S. L.
Wang
,
R.
Sukesan
,
P. C.
Chen
,
T. Y.
Tai
,
A. K.
Pulikkathodi
,
C. P.
Hsu
,
H. H. K.
Chiang
,
L. Y. M.
Liu
, and
Y. L.
Wang
, “
Single drop whole blood diagnostics: Portable biomedical sensor for cardiac troponin I detection
,”
Anal. Chem.
90
,
2867
(
2018
).
42.
I.
Sarangadharan
,
S. L.
Wang
,
T. Y.
Tai
,
A. K.
Pulikkathodi
,
C. P.
Hsu
,
H. H. K.
Chiang
,
L. Y. M.
Liu
, and
Y. L.
Wang
, “
Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection
,”
Biosens. Bioelectron.
107
,
259
(
2018
).
You do not currently have access to this content.