The need for cell and particle sorting in human health care and biotechnology applications is undeniable. Inertial microfluidics has proven to be an effective cell and particle sorting technology in many of these applications. Still, only a limited understanding of the underlying physics of particle migration is currently available due to the complex inertial and impact forces arising from particle–particle and particle–wall interactions. Thus, even though it would likely enable significant advances in the field, very few studies have tried to simulate particle-laden flows in inertial microfluidic devices. To address this, this study proposes new codes (solved in OpenFOAM software) that capture all the salient inertial forces, including the four-way coupling between the conveying fluid and the suspended particles traveling a spiral microchannel. Additionally, these simulations are relatively (computationally) inexpensive since the arbitrary Lagrangian–Eulerian formulation allows the fluid elements to be much larger than the particles. In this study, simulations were conducted for two different spiral microchannel cross sections (e.g., rectangular and trapezoidal) for comparison against previously published experimental results. The results indicate good agreement with experiments in terms of (monodisperse) particle focusing positions, and the codes can readily be extended to simulate two different particle types. This new numerical approach is significant because it opens the door to rapid geometric and flow rate optimization in order to improve the efficiency and purity of cell and particle sorting in biotechnology applications.

1.
M.
Rafeie
,
J.
Zhang
,
M.
Asadnia
,
W.
Li
, and
M. E.
Warkiani
,
Lab Chip
16
(
15
),
2791
2802
(
2016
).
2.
S. O.
Catarino
,
R. O.
Rodrigues
,
D.
Pinho
,
J. M.
Miranda
,
G.
Minas
, and
R.
Lima
,
Micromachines
10
(
9
),
593
(
2019
).
3.
M. S.
Syed
,
M.
Rafeie
,
D.
Vandamme
,
M.
Asadnia
,
R.
Henderson
,
R. A.
Taylor
, and
M. E.
Warkiani
,
Bioresour. Technol.
252
,
91
99
(
2018
).
4.
D. V.
Voronin
,
A. A.
Kozlova
,
R. A.
Verkhovskii
,
A. V.
Ermakov
,
M. A.
Makarkin
,
O. A.
Inozemtseva
, and
D. N.
Bratashov
,
Int. J. Mol. Sci.
21
(
7
),
2323
(
2020
).
5.
A.
Dalili
,
E.
Samiei
, and
M.
Hoorfar
,
Analyst
144
(
1
),
87
113
(
2019
).
6.
W.
Liang
,
J.
Liu
,
X.
Yang
,
Q.
Zhang
,
W.
Yang
,
H.
Zhang
, and
L.
Liu
,
Microfluid. Nanofluid.
24
(
4
),
1
19
(
2020
).
7.
A.
Karimi
,
S.
Yazdi
, and
A.
Ardekani
,
Biomicrofluidics
7
(
2
),
021501
(
2013
).
8.
J.-P.
Matas
,
J. F.
Morris
, and
É.
Guazzelli
,
J. Fluid Mech.
515
,
171
195
(
2004
).
9.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
10.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
,
Lab Chip
9
(
20
),
2973
2980
(
2009
).
11.
J.
Seo
,
M. H.
Lean
, and
A.
Kole
,
Appl. Phys. Lett.
91
(
3
),
033901
(
2007
).
12.
H.
Haddadi
,
H.
Naghsh-Nilchi
, and
D.
Di Carlo
,
Biomicrofluidics
12
(
1
),
014112
(
2018
).
13.
M.
Jiang
,
J.
Li
, and
Z.
Liu
, arXiv:2002.08855v1 (
2020
).
14.
S.
Chen
,
Z.
Liu
,
B.
Shi
,
Z.
He
, and
C.
Zheng
,
Acta Mech. Sin.
21
(
6
),
574
581
(
2005
).
15.
D.
Jiang
,
W.
Tang
,
N.
Xiang
, and
Z.
Ni
,
RSC Adv.
6
(
62
),
57647
57657
(
2016
).
16.
J.-T.
Ma
,
Y.-Q.
Xu
, and
X.-Y.
Tang
,
Comput. Math. Methods Med.
2016
,
28
35
(
2016
).
17.
J.
Tan
,
Z.
Ding
,
M.
Hood
, and
W.
Li
,
Biomicrofluidics
13
(
6
),
064105
(
2019
).
18.
S. R.
Bazaz
,
A.
Mashhadian
,
A.
Ehsani
,
S. C.
Saha
,
T.
Krüger
, and
M. E.
Warkiani
,
Lab Chip
20
(
6
),
1023
1048
(
2020
).
19.
Y.
Dai
,
P.
Li
,
L.
Li
,
J.
Luo
, and
C.
Huang
, paper presented at the 2016 IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 9–11 May 2016.
20.
M.
Rafeie
,
S.
Hosseinzadeh
,
R. A.
Taylor
, and
M. E.
Warkiani
,
Biomicrofluidics
13
(
3
),
034117
(
2019
).
21.
C. T.
Crowe
,
J. D.
Schwarzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2011
).
22.
R. W.
Fox
,
A. T.
McDonald
, and
J. W.
Mitchell
, Fox and McDonald's Introduction to Fluid Mechanics (
John Wiley & Sons
,
2020
).
23.
R.
Di Felice
,
Int. J. Multiphase Flow
20
(
1
),
153
159
(
1994
).
24.
R.
Clift
and
W.
Gauvin
,
Can. J. Chem. Eng.
49
(
4
),
439
448
(
1971
).
25.
A.
Hölzer
and
M.
Sommerfeld
,
Powder Technol.
184
(
3
),
361
365
(
2008
).
26.
R.
Mei
,
Int. J. Multiphase Flow
18
(
1
),
145
147
(
1992
).
27.
E. E.
Michaelides
and
A.
Roig
,
AIChE J.
57
(
11
),
2997
3002
(
2011
).
28.
Y.
Pan
,
T.
Tanaka
, and
Y.
Tsuji
,
Int. J. Multiphase Flow
28
(
4
),
527
552
(
2002
).
29.
P. A.
Cundall
and
O. D.
Strack
,
Geotechnique
29
(
1
),
47
65
(
1979
).
30.
K.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
1985
), pp. 84–106.
31.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Ishida
,
Powder Technol.
71
(
3
),
239
250
(
1992
).
32.
O.
Lara
,
X.
Tong
,
M.
Zborowski
, and
J. J.
Chalmers
,
Exp. Hematol.
32
(
10
),
891
904
(
2004
).
33.
D.
Schrader
,
The Wiley Database of Polymer Properties
(
John Wiley & Sons
,
2003
).
34.
Z.
Liu
,
Y.
Lee
,
J.
hee Jang
,
Y.
Li
,
X.
Han
,
K.
Yokoi
,
M.
Ferrari
,
L.
Zhou
, and
L.
Qin
,
Sci. Rep.
5
,
14272
(
2015
).
35.
S.
Hu
,
R.
Wang
,
C. M.
Tsang
,
S. W.
Tsao
,
D.
Sun
, and
R. H.
Lam
,
RSC Adv.
8
(
2
),
1030
1038
(
2018
).
36.
M.
Li
,
L.
Liu
,
N.
Xi
,
Y.
Wang
,
Z.
Dong
,
X.
Xiao
, and
W.
Zhang
,
Sci. China Life Sci.
55
(
11
),
968
973
(
2012
).
37.
T.
Hayase
,
A.
Shirai
,
H.
Sugiyama
, and
T.
Hamaya
,
Trans. Jpn. Soc. Mech. Eng.
68
(
676
),
3386
3391
(
2002
).
38.
N.
Norouzi
,
H. C.
Bhakta
, and
W. H.
Grover
,
PLoS One
12
(
7
),
e0180520
(
2017
).
39.
G.
Segre
and
A.
Silberberg
,
Nature
189
(
4760
),
209
210
(
1961
).
40.
R.
Moloudi
,
S.
Oh
,
C.
Yang
,
M. E.
Warkiani
, and
M. W.
Naing
,
Microfluid. Nanofluid.
22
(
3
),
33
(
2018
).
41.
M. E.
Warkiani
,
G.
Guan
,
K. B.
Luan
,
W. C.
Lee
,
A. A. S.
Bhagat
,
P. K.
Chaudhuri
,
D. S.-W.
Tan
,
W. T.
Lim
,
S. C.
Lee
, and
P. C.
Chen
,
Lab Chip
14
(
1
),
128
137
(
2014
).
You do not currently have access to this content.