Perfused three-dimensional (3D) cultures enable long-term in situ growth and monitoring of 3D organoids making them well-suited for investigating organoid development, growth, and function. One of the limitations of this long-term on-chip perfused 3D culture is unintended and disruptive air bubbles. To overcome this obstacle, we invented an imaging platform that integrates an innovative microfluidic bubble pocket for long-term perfused 3D culture of gastrointestinal (GI) organoids. We successfully applied 3D printing technology to create polymer molds that cast polydimethylsiloxane (PDMS) culture chambers in addition to bubble pockets. Our developed platform traps unintended, or induced, air bubbles in an integrated PDMS pocket chamber, where the bubbles diffuse out across the gas permeable PDMS or an outlet tube. We demonstrated that our robust platform integrated with the novel bubble pocket effectively circumvents the development of bubbles into human and mouse GI organoid cultures during long-term perfused time-course imaging. Our platform with the innovative integrated bubble pocket is ideally suited for studies requiring long-term perfusion monitoring of organ growth and morphogenesis as well as function.

1.
S. M.
Paul
,
D. S.
Mytelka
,
C. T.
Dunwiddie
,
C. C.
Persinger
,
B. H.
Munos
,
S. R.
Lindborg
, and
A. L.
Schacht
,
Nat. Rev. Drug Discov.
9
,
203
214
(
2010
).
2.
E. W.
Esch
,
A.
Bahinski
, and
D.
Huh
,
Nat. Rev. Drug Discov.
14
,
248
260
(
2015
).
3.
K. H.
Benam
,
S.
Dauth
,
B.
Hassell
,
A.
Herland
,
A.
Jain
,
K. J.
Jang
,
K.
Karalis
,
H. J.
Kim
,
L.
MacQueen
,
R.
Mahmoodian
,
S.
Musah
,
Y. S.
Torisawa
,
A. D.
van der Meer
,
R.
Villenave
,
M.
Yadid
,
K. K.
Parker
, and
D. E.
Ingber
,
Annu. Rev. Pathol.
10
,
195
262
(
2015
).
4.
S. N.
Bhatia
and
D. E.
Ingber
,
Nat. Biotechnol.
32
,
760
772
(
2014
).
5.
S.
Knowlton
,
B.
Yenilmez
, and
S.
Tasoglu
,
Trends Biotechnol.
34
,
685
688
(
2016
).
6.
H.
Lee
and
D. W.
Cho
,
Lab Chip
16
,
2618
2625
(
2016
).
7.
K. H.
Benam
,
R.
Villenave
,
C.
Lucchesi
,
A.
Varone
,
C.
Hubeau
,
H. H.
Lee
,
S. E.
Alves
,
M.
Salmon
,
T. C.
Ferrante
,
J. C.
Weaver
,
A.
Bahinski
,
G. A.
Hamilton
, and
D. E.
Ingber
,
Nat. Methods
13
,
151
157
(
2016
).
8.
H. J.
Kim
,
H.
Li
,
J. J.
Collins
, and
D. E.
Ingber
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
E7
E15
(
2016
).
9.
M. B.
Esch
,
H.
Ueno
,
D. R.
Applegate
, and
M. L.
Shuler
,
Lab Chip
16
,
2719
2729
(
2016
).
10.
T.
Sato
,
R. G.
Vries
,
H. J.
Snippert
,
M.
van de Wetering
,
N.
Barker
,
D. E.
Stange
,
J. H.
van Es
,
A.
Abo
,
P.
Kujala
,
P. J.
Peters
, and
H.
Clevers
,
Nature
459
,
262
265
(
2009
).
11.
J. R.
Spence
,
C. N.
Mayhew
,
S. A.
Rankin
,
M. F.
Kuhar
,
J. E.
Vallance
,
K.
Tolle
,
E. E.
Hoskins
,
V. V.
Kalinichenko
,
S. I.
Wells
,
A. M.
Zorn
,
N. F.
Shroyer
, and
J. M.
Wells
,
Nature
470
,
105
109
(
2011
).
12.
K. A.
D'Amour
,
A. D.
Agulnick
,
S.
Eliazer
,
O. G.
Kelly
,
E.
Kroon
, and
E. E.
Baetge
,
Nat. Biotechnol.
23
,
1534
1541
(
2005
).
13.
K. W.
McCracken
,
J. C.
Howell
,
J. M.
Wells
, and
J. R.
Spence
,
Nat. Protoc.
6
(
12
),
1920
1928
(
2011
).
14.
X.
Yin
,
B. E.
Mead
,
H.
Safaee
,
R.
Langer
,
J. M.
Karp
, and
O.
Levy
,
Cell Stem Cell
18
,
25
38
(
2016
).
15.
K. K.
Lee
,
H. A.
McCauley
,
T. R.
Broda
,
M. J.
Kofron
,
J. M.
Wells
, and
C. I.
Hong
,
Lab Chip
18
,
3079
3085
(
2018
).
16.
A.
Skardal
,
T.
Shupe
, and
A.
Atala
,
Drug Discov. Today
9
,
1399
1411
(
2016
).
17.
L. A.
Low
and
D. A.
Tagle
,
Lab Chip
17
,
3026
3036
(
2017
).
18.
C.
Liu
,
J. A.
Thompson
, and
H. H.
Bau
,
Lab Chip
11
,
1688
1693
(
2011
).
19.
J. M.
Karlsson
,
M.
Gazin
,
S.
Laakso
,
T.
Haraldsson
,
S.
Malhotra-Kumar
,
M.
Mäki
,
H.
Goossens
, and
W.
van der Wijngaart
,
Lab Chip
13
,
4366
4373
(
2013
).
20.
A. M.
Skelley
and
J.
Voldman
,
Lab Chip
8
,
1733
1737
(
2008
).
21.
A.
Hibara
,
S.
Iwayama
,
S.
Matsuoka
,
M.
Ueno
,
Y.
Kikutani
,
M.
Tokeshi
, and
T.
Kitamori
,
Anal. Chem.
77
,
943
947
(
2005
).
22.
W.
Zheng
,
Z.
Wang
,
W.
Zhang
, and
X.
Jiang
,
Lab Chip
10
,
2906
2910
(
2010
).
23.
Z.
Yang
,
S.
Matsumoto
, and
R.
Maeda
,
Sens. Actuator A Phys.
95
,
274
280
(
2002
).
24.
J. H.
Kang
,
Y. C.
Kim
, and
J.-K.
Park
,
Lab Chip
8
,
176
178
(
2008
).
25.
T.
Abe
,
A.
Sakaue-Sawano
,
H.
Kiyonari
,
G.
Shioi
,
K.
Inoue
,
T.
Horiuchi
,
K.
Nakao
,
A.
Miyawaki
,
S.
Aizawa
, and
T.
Fujimori
,
Development
140
,
237
246
(
2013
).
26.
S. R.
Moore
,
J.
Pruszka
,
J.
Vallance
,
E.
Aihara
,
T.
Matsu-Ura
,
M. H.
Montrose
,
N. F.
Shroyer
, and
C. I.
Hong
,
Dis. Models Mech.
7
,
1123
1130
(
2014
).
27.
T.
Matsu-Ura
,
A.
Dovzhenok
,
E.
Aihara
,
J.
Rood
,
H.
Le
,
Y.
Ren
,
A. E.
Rosselot
,
T.
Zhang
,
C.
Lee
,
K.
Obrietan
,
M. H.
Montrose
,
S.
Lim
,
S. R.
Moore
, and
C. I.
Hong
,
Mol. Cell
64
,
900
912
(
2016
).

Supplementary Material

You do not currently have access to this content.