Microfluidics is a relatively novel interdisciplinary research area with broad applications in chemistry, physics, material science, and biology. Despite the rapid growth of the field, students' exposure to microfluidic technologies is still limited and often insufficient to appreciate the advantages over other commonly used technologies. To this end, we designed a five-day course, “Microfluidics for microbial ecology,” in which students with very different backgrounds learn the basics of microfluidic technologies and sample a range of applications in microbial ecology. The course was created for Master and Ph.D. students interested in applying microfluidics to their research and, therefore, followed an application-oriented approach. The presentation of critical aspects of fluid flow phenomena at the microscale and an outline of the advantages and constraints of the technology provide students with the background to design and perform microfluidics-based experiments. In order to improve the effectiveness of learning in a class with diverse interests and backgrounds, two active learning exercises were implemented. The first comprised the design of an individualized microfluidics experiment in parallel with the lectures: students were guided to apply each module to their personalized application and discuss it in groups. The second was a group experimental activity, in which students jointly set up, performed, analyzed, and presented a microfluidics-based experiment. Given the multidisciplinary teaching context, the course was able to foster common conceptual ground and promote discussion among students. This application-oriented approach built upon experimental activities and in-class discussion is well suited to promote learning in a technology-related subject such as microfluidics.

1.
2.
P.
Tabeling
,
Curr. Opin. Biotechnol.
25
,
129
(
2014
).
3.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
,
977
(
2005
).
4.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
5.
J.
Friend
and
L.
Yeo
,
Biomicrofluidics
4
,
026502
(
2010
).
6.
D. B.
Weibel
,
W. R.
Diluzio
, and
G. M.
Whitesides
,
Nat. Rev. Microbiol.
5
,
209
(
2007
).
7.
K.
Son
,
D. R.
Brumley
, and
R.
Stocker
,
Nat. Rev. Microbiol.
13
,
761
(
2015
).
8.
H. A.
Stone
,
Handbook of Environmental Fluid Dynamics, Volume One: Overview and Fundamentals
(CRC Press,
2012
), p.
177
.
9.
R.
Pol
,
F.
Céspedes
,
D.
Gabriel
, and
M.
Baeza
,
Trends Anal. Chem.
95
,
62
(
2017
).
10.
J.
Chen
,
J.
Li
, and
Y.
Sun
,
Lab Chip
12
,
1753
(
2012
).
11.
12.
D. G.
Rackus
,
I. H.
Riedel-Kruse
, and
N.
Pamme
,
Biomicrofluidics
13
, 041501 (
2019
).
13.
C.
Maltbie
,
I.
Papautsky
,
S.
van den Hoogenhof
,
D.
Eddington
,
B.
Gale
,
J.
Choi
, and
G.
Walker
, in
2010 IEEE Frontiers in Education Conference (FIE)
, Washington, DC, 27–30 October 2010 (IEEE, 2010), pp. S2F-1-S2F-6.
14.
L. R.
Lattuca
,
L. J.
Voight
, and
K. Q.
Fath
,
Rev. High. Educ.
28
,
23
(
2004
).
15.
M.-F.
Orillion
,
J. Gen. Educ.
58
,
1
(
2009
), https://www.jstor.org/stable/27798118.
16.
M.
Hemling
,
J. A.
Crooks
,
P. M.
Oliver
,
K.
Brenner
,
J.
Gilbertson
,
G. C.
Lisensky
, and
D. B.
Weibel
,
J. Chem. Educ.
91
,
112
(
2014
).
17.
S.
Lee
and
J.
Wiener
,
J. Chem. Educ.
88
,
151
(
2011
).
18.
P. A. E.
Piunno
,
A.
Zetina
,
N.
Chu
,
A. J.
Tavares
,
M. O.
Noor
,
E.
Petryayeva
,
U.
Uddayasankar
, and
A.
Veglio
,
J. Chem. Educ.
91
,
902
(
2014
).
19.
S.
Teerasong
and
R. L.
McClain
,
J. Chem. Educ.
88
,
465
(
2011
).
20.
T.-C.
Chao
,
S.
Bhattacharya
, and
A.
Ros
,
J. Chem. Educ.
89
,
125
(
2012
).
21.
B.
Giri
,
R. R.
Peesara
,
N.
Yanagisawa
, and
D.
Dutta
,
J. Chem. Educ.
92
,
728
(
2015
).
22.
C. H.
Legge
,
J. Chem. Educ.
79
,
173
(
2002
).
23.
I. H.
Riedel-Kruse
,
A. M.
Chung
,
B.
Dura
,
A. L.
Hamilton
, and
B. C.
Lee
,
Lab Chip
11
,
14
(
2011
).
24.
N. J.
Cira
,
A. M.
Chung
,
A. K.
Denisin
,
S.
Rensi
,
G. N.
Sanchez
,
S. R.
Quake
, and
I. H.
Riedel-Kruse
,
PLoS Biol.
13
,
e1002110
(
2015
).
25.
H.
Kim
,
L. C.
Gerber
,
D.
Chiu
,
S. A.
Lee
,
N. J.
Cira
,
S. Y.
Xia
, and
I. H.
Riedel-Kruse
,
PLoS One
11
,
e0168053
(
2016
).
26.
J. J.
Wietsma
,
J. T.
Van Der Veen
,
W.
Buesink
,
A.
Van Den Berg
, and
M.
Odijk
,
J. Chem. Educ.
95
,
267
(
2018
).
27.
J. A. S.
Morton
and
H.
Bridle
,
Biomicrofluidics
10
, 034117 (
2016
).
28.
W. C.
Kang
,
E.
Jordan
, and
M.
Porath
,
Interdiscip. J. Probl. Learn.
3
,
10
(
2012
).
29.
L. I.
Mingxin
,
Asia Pacific J. Multidiscip. Res.
2
,
219
(
2014
).
30.
M.
Kaabar
,
Am. Math. Soc.
9
,
1
(
2016
).
31.
M. E.
Ssemakula
,
R. W.
Pryor
, and
M.
Schumack
,
Front. Educ. Conf.
S4H
,
1613
(
1997
).
32.
J.
Savery
,
Int. J. Probl. Learn.
1
,
9
(
2006
).
33.
D.
Boud
,
R.
Cohen
, and
J.
Sampson
,
Assess. Eval. High. Educ.
24
,
413
(
1999
).
34.
K. G.
Collier
,
Stud. High. Educ.
5
,
55
(
1980
).
35.
M.
Keppell
,
E.
Au
,
A.
Ma
, and
C.
Chan
,
Assess. Eval. High. Educ.
31
,
453
(
2006
).
36.
L. W.
Anderson
and
D. R.
Krathwohl
, “A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives,”
Spring
83
(4),
212
–220 (
2001
).
37.
P.
Guillot
,
P.
Panizza
,
J.-B.
Salmon
,
M.
Joanicot
,
A.
Colin
,
C.-H. B.
And
, and
T.
Colin
,
Langmuir
22
,
6438
(
2006
).
38.
J.
Gachelin
,
G.
Mino
,
H.
Berthet
,
A.
Lindner
,
A.
Rousselet
, and
E.
Clement
,
Phys. Rev. Lett.
110
,
268103
(
2013
).
39.
A. R.
Abate
,
A. T.
Krummel
,
D.
Lee
,
M.
Marquez
,
C.
Holtze
, and
D. A.
Weitz
,
Lab Chip
8
,
2157
(
2008
).
40.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
6
,
437
(
2006
).
41.
A.
Herbert
,
F.
Allan
,
P.
Posch
, and
B.
Somekh
,
Teachers Investigate Their Work: An Introduction to Action Research Across the Professions
(Routledge,
London
,
2005
).
42.
K.
Tanner
and
D.
Allen
,
Cell Biol. Educ.
3
,
69
(
2004
).

Supplementary Material

You do not currently have access to this content.