In this paper, we use a spiral channel inertial focusing device for isolation and purification of chromosomes, which are highly asymmetric. The method developed is proposed as a sample preparation process for transchromosomic research. The proposed microfluidics-based chromosome separation approach enables rapid, label-free isolation of bioactive chromosomes and is compatible with chromosome buffer. As part of this work, particle force analysis during the separation process is performed utilizing mathematic models to estimate the expected behavior of chromosomes in the channel and the model validated with experiments employing fluorescent beads. The chromosome sample is further divided into subtypes utilizing fluorescent activated cell sorting , including small condensed chromosomes, single chromosomes, and groups of two chromosomes (four sister chromatids). The separation of chromosome subtypes is realized based on their shape differences in the spiral channel device under high flow rate conditions. When chromosomes become aligned in the shear flow, the balance between the inertial focusing force and the Dean flow drag force is determined by the chromosome projection area and aspect ratio, or shape difference, leading to different focusing locations in the channel. The achieved results indicate a new separation regime in inertial microfluidics that can be used for the separation of non-spherical particles based on particle aspect ratios, which could potentially be applied in fields such as bacteria subtype separation and chromosome karyotyping.

1.
O. W.
McBride
and
H. L.
Ozer
, “
Transfer of genetic information by purified metaphase chromosomes
,”
Proc. Natl. Acad. Sci. U. S. A.
70
,
1258
1262
(
1973
).
2.
R. E.
Fournier
and
F. H.
Ruddle
, “
Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells
,”
Proc. Natl. Acad. Sci. U. S. A.
74
,
319
323
(
1977
).
3.
S. M.
Gribble
,
F. K.
Wiseman
,
S.
Clayton
,
E.
Prigmore
,
E.
Langley
,
F.
Yang
 et al, “
Massively parallel sequencing reveals the complex structure of an irradiated human chromosome on a mouse background in the Tc1 model of Down syndrome
,”
PLoS One
8
,
e60482
(
2013
).
4.
A.
O’Doherty
,
S.
Ruf
,
C.
Mulligan
,
V.
Hildreth
,
M. L.
Errington
,
S.
Cooke
 et al, “
An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes
,”
Science
309
,
2033
2037
(
2005
).
5.
H.
Lodish
,
A.
Berk
, and
S.
Zipursky
, “
Section 9.6 morphology and functional elements of eukaryotic chromosomes
,” in
Molecular Cell Biology
, 4th ed. (
W. H. Freeman
,
New York
,
2000
).
6.
M.
Yusuf
,
N.
Parmar
,
G. K.
Bhella
, and
I. K.
Robinson
, “
A simple filtration technique for obtaining purified human chromosomes in suspension
,”
BioTechniques
56
,
257
261
(
2014
).
7.
J. G.
Collard
,
E.
Philippus
,
A.
Tulp
,
R. V.
Lebo
, and
J. W.
Gray
, “
Separation and analysis of human chromosomes by combined velocity sedimentation and flow sorting applying single- and dual-laser flow cytometry
,”
Cytometry
5
,
9
19
(
1984
).
8.
N.
Xiang
and
Z.
Ni
, “
High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices
,”
Biomed. Microdevices
17
,
110
(
2015
).
9.
H. W.
Hou
,
M. E.
Warkiani
,
B. L.
Khoo
,
Z. R.
Li
,
R. A.
Soo
,
D. S.-W.
Tan
 et al, “
Isolation and retrieval of circulating tumor cells using centrifugal forces
,”
Sci. Rep.
3
,
1259
(
2013
).
10.
J.
Son
,
K.
Murphy
,
R.
Samuel
,
B. K.
Gale
,
D. T.
Carrell
, and
J. M.
Hotaling
, “
Non-motile sperm cell separation using a spiral channel
,”
Anal. Methods
7
,
8041
8047
(
2015
).
11.
D.
Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
,
094503
(
2009
).
12.
J.
Zhou
and
I.
Papautsky
, “
Fundamentals of inertial focusing in microchannels
,”
Lab Chip
13
,
1121
1132
(
2013
).
13.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
18892
18897
(
2007
).
14.
J. M.
Martel
and
M.
Toner
, “
Particle focusing in curved microfluidic channels
,”
Sci. Rep.
3
,
3340
(
2013
).
15.
J. M.
Martel
and
M.
Toner
, “
Inertial focusing dynamics in spiral microchannels
,”
Phys. Fluids
24
,
032001
(
2012
).
16.
J.
Zhang
,
W.
Li
,
M.
Li
,
G.
Alici
, and
N.-T.
Nguyen
, “
Particle inertial focusing and its mechanism in a serpentine microchannel
,”
Microfluidics Nanofluidics
17
,
305
316
(
2013
).
17.
D. R.
Gossett
and
D.
Carlo
, “
Particle focusing mechanisms in curving confined flows
,”
Anal. Chem.
81
,
8459
8465
(
2009
).
18.
A.
Russom
,
A. K.
Gupta
,
S.
Nagrath
, and
D. D.
Carlo
, “
Differential inertial focusing of particles in curved low-aspect-ratio microchannels
,”
New J. Phys.
11
,
75025
(
2009
).
19.
S. S.
Kuntaegowdanahalli
,
A. A.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle separation in spiral microchannels
,”
Lab Chip
9
,
2973
2980
(
2009
).
20.
A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using Dean flows and differential migration
,”
Lab Chip
8
,
1906
1914
(
2008
).
21.
D.
Qi
and
L.
Luo
, “
Transitions in rotations of a non-spherical particle in a three-dimensional moderate Reynolds number Couette flow
,”
Phys. Fluids
14
,
4440
4443
(
2002
).
22.
M.
Masaeli
,
E.
Sollier
,
H.
Amini
,
W.
Mao
, and
K.
Camacho
, “
Continuous inertial focusing and separation of particles by shape
,”
Phys. Rev. X
2
, 031017 (
2012
).
23.
M.
Trebbin
,
D.
Steinhauser
,
J.
Perlich
,
A.
Buffet
,
S. V.
Roth
,
W.
Zimmermann
 et al, “
Anisotropic particles align perpendicular to the flow direction in narrow microchannels
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6706
6711
(
2013
).
24.
C.
Prohm
,
N.
Zöller
, and
H.
Stark
, “
Controlling inertial focussing using rotational motion
,”
Eur. Phys. J. E
37
,
36
(
2014
).
25.
W. E.
Uspal
,
H. B.
Eral
, and
P. S.
Doyle
, “
Engineering particle trajectories in microfluidic flows using particle shape
,”
Nat. Commun.
4
, 2666 (
2013
).
26.
D.
Leith
, “
Drag on non-spherical objects
,”
Aerosol Sci. Technol.
6
,
153
161
(
1987
).
27.
H.
Feng
,
M.
Hockin
,
S.
Zhang
,
M.
Capecchi
,
B.
Gale
, and
H.
Sant
, “
Enhanced chromosome extraction from cells using a pinched flow microfluidic device
,”
Biomed. Microdevices
22
,
25
(
2020
).

Supplementary Material

You do not currently have access to this content.