Cell lysis is a critical step in genomics for the extraction of cellular components of downstream assays. Electrical lysis (EL) offers key advantages in terms of speed and non-interference. Here, we report a simple, chemical-free, and automated technique based on a microfluidic device with passivated interdigitated electrodes with DC fields for continuous EL of cancer cells. We show that the critical problems in EL, bubble formation and electrode erosion that occur at high electric fields, can be circumvented by passivating the electrodes with a thin layer (∼18 μm) of polydimethylsiloxane. We present a numerical model for the prediction of the transmembrane potential (TMP) at different coating thicknesses and voltages to verify the critical TMP criterion for EL. Our simulations showed that the passivation layer results in a uniform electric field in the electrode region and offers a TMP in the range of 5–7 V at an applied voltage of 800 V, which is well above the critical TMP (∼1 V) required for EL. Experiments revealed that lysis efficiency increases with an increase in the electric field (E) and residence time (tr): a minimum E ∼ 105 V/m and tr ∼ 1.0 s are required for efficient lysis. EL of cancer cells is demonstrated and characterized using immunochemical staining and compared with chemical lysis. The lysis efficiency is found to be ∼98% at E = 4 × 105 V/m and tr = 0.72 s. The efficient recovery of genomic DNA via EL is demonstrated using agarose gel electrophoresis, proving the suitability of our method for integration with downstream on-chip assays.

1.
C.
Dusny
and
A.
Grünberger
,
Curr. Opin. Biotechnol.
63
,
26
(
2020
).
2.
S. M. B.
Nijman
,
Trends Cancer
6
,
454
(
2020
).
3.
M.
Qian
,
D. C.
Wang
,
H.
Chen
, and
Y.
Cheng
,
Semin. Cell Dev. Biol.
64
,
143
(
2017
).
4.
P. J.
Marc
,
C. E.
Sims
,
M.
Bachman
,
G. P.
Li
, and
N. L.
Allbritton
,
Lab Chip
8
,
710
(
2008
).
5.
N.
Bao
and
C.
Lu
,
Appl. Phys. Lett.
92
,
214103
(
2008
).
6.
K.
Park
,
D.
Akin
, and
R.
Bashir
,
Biomed. Microdev.
9
,
877
(
2007
).
7.
P. E.
Vandeventer
,
K. M.
Weigel
,
J.
Salazar
,
B.
Erwin
,
B.
Irvine
,
R.
Doebler
,
A.
Nadim
,
G. A.
Cangelosi
, and
A.
Niemz
,
J. Clin. Microbiol.
49
,
2533
(
2011
).
8.
J.
Reboud
,
Y.
Bourquin
,
R.
Wilson
,
G. S.
Pall
,
M.
Jiwaji
,
A. R.
Pitt
,
A.
Graham
,
A. P.
Waters
, and
J. M.
Cooper
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
15162
(
2012
).
9.
R.
Sharma
,
B. D.
Dill
,
K.
Chourey
,
M.
Shah
,
N. C.
Verberkmoes
, and
R. L.
Hettich
,
J. Proteome Res.
11
,
6008
(
2012
).
10.
E. A.
Schilling
,
A. E.
Kamholz
, and
P.
Yager
,
Anal. Chem.
74
,
1798
(
2002
).
11.
P.
Marmottant
and
S.
Hilgenfeldt
,
Nature
423
,
153
(
2003
).
12.
D.
Taller
,
K.
Richards
,
Z.
Slouka
,
S.
Senapati
,
R.
Hill
,
D. B.
Go
, and
H. C.
Chang
,
Lab Chip
15
,
1656
(
2015
).
13.
T. S.
Santra
and
F. G.
Tseng
,
Micromachines
4
,
333
(
2013
).
14.
M.
Poudineh
,
R. M.
Mohamadi
,
A.
Sage
,
L.
Mahmoudian
,
E. H.
Sargent
, and
S. O.
Kelley
,
Lab Chip
14
,
1785
(
2014
).
15.
S. C.
Bürgel
,
C.
Escobedo
,
N.
Haandbæk
, and
A.
Hierlemann
,
Sens. Actuators B Chem.
210
,
82
(
2015
).
16.
S.
Ma
,
B. D.
Bryson
,
C.
Sun
,
S. M.
Fortune
, and
C.
Lu
,
Anal. Chem.
88
,
5053
(
2016
).
17.
F.
Jiang
,
J.
Chen
, and
J.
Yu
,
Instrum. Sci. Technol.
44
,
223
(
2016
).
18.
T.
Geng
,
N.
Bao
,
N.
Sriranganathanw
,
L.
Li
, and
C.
Lu
,
Anal. Chem.
84
,
9632
(
2012
).
19.
M. S.
Islam
,
A.
Aryasomayajula
, and
P. R.
Selvaganapathy
,
Micromachines
8
,
83
(
2017
).
20.
X.
Yu Wei
,
J.
Hua Li
,
L.
Wang
, and
F.
Yang
,
Biomed. Microdevices
21
,
1
(
2019
).
21.
B. I.
Morshed
,
M.
Shams
, and
T.
Mussivand
,
Crit. Rev. Biomed. Eng.
41
,
37
(
2013
).
22.
H.
Jeon
,
S.
Kim
, and
G.
Lim
,
Microelectron. Eng.
198
,
55
(
2018
).
23.
H.
Lu
,
M. A.
Schmidt
, and
K. F.
Jensen
,
Lab Chip
5
,
23
(
2005
).
24.
C. P.
Jen
,
T. G.
Amstislavskaya
,
Y. H.
Liu
,
J. H.
Hsiao
, and
Y. H.
Chen
,
Sensors
12
,
6967
(
2012
).
25.
K.
Riaz
,
S. F.
Leung
,
Z.
Fan
, and
Y. K.
Lee
,
J. Microelectromech. Syst.
26
,
910
920
(
2017
).
26.
G.
Mernier
,
R.
Martinez-Duarte
,
R.
Lehal
,
F.
Radtke
, and
P.
Renaud
,
Micromachines
3
,
574
(
2012
).
27.
H. J.
Lee
,
J.
Kim
,
K.
Lim
,
C.
Cho
,
N.
Huh
,
C.
Ko
,
C.
Park
,
J.
Choi
, and
S.
Suk
,
Lab Chip
10
,
626
(
2010
).
28.
M.
Shahini
and
J. T. W.
Yeow
,
Nanotechnology
22
,
325705
(
2011
).
29.
Y. J.
Lo
and
U.
Lei
,
Micromachines
10
,
247
(
2019
).
30.
J.
Jin
and
Z. M.
Bhujwalla
,
Front. Oncol.
9
,
1560
(
2019
).
31.
C.
Escobedo
,
S. C.
Bürgel
,
S.
Kemmerling
,
N.
Sauter
,
T.
Braun
, and
A.
Hierlemann
,
Lab Chip
15
,
2990
(
2015
).
32.
F.
Han
,
Y.
Wang
,
C. E.
Sims
,
M.
Bachman
,
R.
Chang
,
G. P.
Li
, and
N. L.
Allbritton
,
Anal. Chem.
75
,
3688
(
2003
).
33.
L.
Nan
,
Z.
Jiang
, and
X.
Wei
,
Lab Chip
14
,
1060
(
2014
).
34.
S.
Jaikla
,
T.
Maturos
,
T.
Pogfay
,
C.
Neatpisarnvanit
,
P.
Sritongkham
, and
A.
Tuantranont
, in
BMEiCON 2012: 5th 2012 Biomedical Engineering International Conference
(
IEEE
,
2012
), pp. 1–5.
35.
J. S.
Kee
,
D. P.
Poenar
,
P.
Neuzil
, and
L.
Yobas
,
Opt. Express
17
,
11739
(
2009
).
36.
M.
Carmo
,
D. L.
Fritz
,
J.
Mergel
, and
D.
Stolten
,
Int. J. Hydrogen Energy
38
,
4901
(
2013
).
37.
S.
Trassati
,
J. Electroanal. Chem.
476
,
90
(
1999
).
38.
S.
Nandhakumar
,
S.
Parasuraman
,
M. M.
Shanmugam
,
K. R.
Rao
,
P.
Chand
, and
B. V.
Bhat
,
J. Pharmacol. Pharmacother.
2
,
107
(
2011
).
39.
K. J.
Müller
,
V. L.
Sukhorukov
, and
U.
Zimmermann
,
J. Membr. Biol.
184
,
161
(
2001
).
40.
P.
Sajeesh
,
S.
Manasi
,
M.
Doble
, and
A. K.
Sen
,
Lab Chip
15
,
3738
(
2015
).
41.
G.
Pucihar
,
T.
Kotnik
,
B.
Valič
, and
D.
Miklavčič
,
Ann. Biomed. Eng.
34
,
642
(
2006
).
42.
V.
Jayasooriya
and
D.
Nawarathna
, in Proceedings of the 2017 COMSOL Conference (COMSOL, 2017); available at https://www.comsol.se/paper/download/437932/logeeshan_paper.pdf
43.
M. Y.
Sulaeman
and
R.
Widita
,
J. Phys. Conf. Ser.
694
,
012072
(
2016
).
44.
M. A.
Aslam
,
K.
Riaz
,
M. Q.
Mahmood
, and
M.
Zubair
,
RSC Adv.
9
,
41518
(
2019
).
45.
P.
Marszalek
,
J. J.
Zielinsky
,
M.
Fikus
, and
T. Y.
Tsong
,
Biophys. J.
59
,
982
(
1991
).
46.
C.
Lochovsky
, “
Trapping and Removal of Bubbles in a Microfluidic Format
,” MASc Thesis, (University of Toronto, 2012). pp. 1–109.
47.
D. P.
Heineck
,
B.
Sarno
,
S.
Kim
, and
M.
Heller
,
Anal. Bioanal. Chem.
412
,
3871
(
2020
).
48.
J. E.
Mark
,
Polymer Data Handbook
(
Oxford Univeristy Press
,
1999
), pp.
29
36
.
49.
M. P.
Hughes
,
Nanoelectromechanics in Engineering and Biology
(
CRC Press
,
2002
).
50.
W. F.
Quirós-Solano
,
N.
Gaio
,
O. M. J. A.
Stassen
,
Y. B.
Arik
,
C.
Silvestri
,
N. C. A.
Van Engeland
,
A.
Van der Meer
,
R.
Passier
,
C. M.
Sahlgren
,
C. V. C.
Bouten
,
A.
van den Berg
,
R.
Dekker
, and
P. M.
Sarro
,
Sci. Rep.
8
,
1
(
2018
).
51.
M. C.
Phelan
and
G.
Lawler
,
Curr. Protoc. Cytom.
00
,
A.3A.1
(
1997
).

Supplementary Material

You do not currently have access to this content.