3D printed microfluidic devices are made of stiff and easy-to-fatigue materials and hence are difficult to have robust pneumatic valves. In this work, we describe a type of prefabricated polydimethylsiloxane (PDMS) valves, named the “Luer-lock” valve, which can be incorporated in 3D printed microfluidic devices utilizing the Luer-lock mechanism. Luer-lock design has been adopted for fluidic connections worldwide; it is facile, reliable, and inexpensive. To take advantage of the Luer-lock design, we added “valve ports” to our 3D printed microfluidic devices; prefabricated PDMS valve modules could be embedded into these valve ports, in a leak-free manner, by screwing tight the Luer-locks. In the experiment, we succeeded in fabricating pneumatic valves with a footprint diameter of 0.8 mm and verified the functionality of these valves with a shut-off pressure of 140 mbar and a maximal switching frequency of ∼1 Hz. As a demonstration, we show the serial encoding of core–shell hydrogel microfibers using the Luer-lock valves. Since the Luer-lock valves can be mass-produced and the CAD model of Luer-locks can be easily distributed, we believe that our approach has the potential to be easily adopted by researchers around the globe.

1.
S.
Maruo
,
O.
Nakamura
, and
S.
Kawata
, “
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
,”
Opt. Lett.
22
,
132
134
(
1997
).
2.
C.
Sun
,
N.
Fang
,
D. M.
Wu
, and
X.
Zhang
, “
Projection micro-stereolithography using digital micro-mirror dynamic mask
,”
Sens. Actuators A Phys.
121
,
113
120
(
2005
).
3.
S.
Kawata
,
H. B.
Sun
,
T.
Tanaka
, and
K.
Takada
, “
Finer features for functional microdevices
,”
Nature
412
,
697
698
(
2001
).
4.
J.
Fischer
and
M.
Wegener
, “
Three-dimensional optical laser lithography beyond the diffraction limit
,”
Laser Photonics Rev.
7
,
22
(
2013
).
5.
F.
Kotz
,
K.
Arnold
,
W.
Bauer
,
D.
Schild
,
N.
Keller
,
K.
Sachsenheimer
,
T. M.
Nargang
,
C.
Richter
,
D.
Helmer
, and
B. E.
Rapp
, “
Three-dimensional printing of transparent fused silica glass
,”
Nature
544
,
337
339
(
2017
).
6.
M. A.
Skylar-Scott
,
J.
Mueller
,
C. W.
Visser
, and
J. A.
Lewis
, “
Voxelated soft matter via multimaterial multinozzle 3D printing
,”
Nature
575
,
330
335
(
2019
).
7.
K. G.
Lee
,
K. J.
Park
,
S.
Seok
,
S.
Shin
,
K.
Do Hyun
,
J. Y.
Park
,
Y. S.
Heo
,
S. J.
Lee
, and
T. J.
Lee
, “
3D printed modules for integrated microfluidic devices
,”
RSC Adv.
4
,
32876
32880
(
2014
).
8.
A. K.
Au
,
W.
Lee
, and
A.
Folch
, “
Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
,”
Lab Chip
14
,
1294
1301
(
2014
).
9.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
, “
The upcoming 3D-printing revolution in microfluidics
,”
Lab Chip
16
,
1720
1742
(
2016
).
10.
Y.
Morimoto
,
W.-H.
Tan
, and
S.
Takeuchi
, “
Three-dimensional axisymmetric flow-focusing device using stereolithography
,”
Biomed. Microdevices
11
,
369
377
(
2009
).
11.
Y.
Morimoto
,
M.
Kiyosawa
, and
S.
Takeuchi
, “
Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices
,”
Sens. Actuators B Chem.
274
,
491
500
(
2018
).
12.
J.
Lölsberg
,
J.
Linkhorst
,
A.
Cinar
,
A.
Jans
,
A.
Kuehne
, and
M.
Wessling
, “
3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres
,”
Lab Chip
18
,
1341
(
2018
).
13.
M. S.
Syed
,
M.
Rafeie
,
R.
Henderson
,
D.
Vandamme
,
M.
Asadnia
, and
M. E.
Warkiani
, “
A 3D-printed mini-hydrocyclone for high throughput particle separation: Application to primary harvesting of microalgae
,”
Lab Chip
17
,
2459
(
2017
).
14.
A. K.
Au
,
N.
Bhattacharjee
,
L. F.
Horowitz
,
T. C.
Chang
, and
A.
Folch
, “
3D-printed microfluidic automation
,”
Lab Chip
15
,
1934
1941
(
2015
).
15.
C. I.
Rogers
,
K.
Qaderi
,
A. T.
Woolley
, and
G. P.
Nordin
, “
3D printed microfluidic devices with integrated valves
,”
Biomicrofluidics
9
,
016501
(
2015
).
16.
H.
Gong
,
A. T.
Woolley
, and
G. P.
Nordin
, “
High density 3D printed microfluidic valves, pumps, and multiplexers
,”
Lab Chip
16
,
2450
2458
(
2016
).
17.
R. D.
Sochol
,
E.
Sweet
,
C. C.
Glick
,
S.
Venkatesh
,
A.
Avetisyan
,
K. F.
Ekman
,
A.
Raulinaitis
,
A.
Tsai
,
A.
Wienkers
,
K.
Korner
,
K.
Hanson
,
A.
Long
,
B. J.
Hightower
,
G.
Slatton
,
D. C.
Burnett
,
T. L.
Massey
,
K.
Iwai
,
L. P.
Lee
,
K. S. J.
Pister
, and
L.
Lin
, “
3D printed microfluidic circuitry via multijet-based additive manufacturing
,”
Lab Chip
16
,
668
678
(
2016
).
18.
Y.-S.
Lee
,
N.
Bhattacharjee
, and
A.
Folch
, “
3D-printed Quake-style microvalves and micropumps
,”
Lab Chip
18
,
1207
(
2018
).
19.
M.
Wehner
,
R. L.
Truby
,
D. J.
Fitzgerald
,
B.
Mosadegh
,
G. M.
Whitesides
,
J. A.
Lewis
, and
R. J.
Wood
, “
An integrated design and fabrication strategy for entirely soft, autonomous robots
,”
Nature
536
,
451
455
(
2016
).
20.
S.
Tsuda
,
H.
Jaffery
,
D.
Doran
,
M.
Hezwani
,
P. J.
Robbins
,
M.
Yoshida
, and
L.
Cronin
, “
Customizable 3D printed “plug and play” millifluidic devices for programmable fluidics
,”
PLoS One
10
,
e0141640
(
2015
).
21.
S. J.
Keating
,
M. I.
Gariboldi
,
W. G.
Patrick
,
S.
Sharma
,
D. S.
Kong
, and
N.
Oxman
, “
3D printed multimaterial microfluidic valve
,”
PLoS One
11
,
e0160624
(
2016
).
22.
X.
Zhang
and
A. E.
Oseyemi
, “
Microfluidic passive valve with ultra-low threshold pressure for high-throughput liquid delivery
,”
Micromachines
10
,
798
(
2019
).
23.
J. E.
Mark
,
Polymer Data Handbook
(
Oxford University Press
,
2009
).
24.
S. E.
Hulme
,
S. S.
Shevkoplyas
, and
G. M.
Whitesides
, “
Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices
,”
Lab Chip
9
,
79
86
(
2009
).
25.
J. M.
Karlsson
,
T.
Haraldsson
,
C. F.
Carlborg
,
J.
Hansson
,
A.
Russom
, and
W.
van der Wijngaart
, “
Fabrication and transfer of fragile 3D PDMS microstructures
,”
J. Micromech. Microeng.
22
,
085009
(
2012
).
26.
J.
Mikael Karlsson
,
T.
Haraldsson
,
C. F.
Carlborg
, and
W.
van der Wijngaart
, “
Low-stress transfer bonding using floatation
,”
J. Micromech. Microeng.
22
,
075005
(
2012
).
27.
P.
Thomas
,
R. S.
Ernest Ravindran
, and
K. B. R.
Varma
, “
Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing
,”
J. Therm. Anal. Calorim.
115
,
1311
1319
(
2014
).
28.
Y.
Morimoto
,
K.
Kuribayashi-Shigetomi
, and
S.
Takeuchi
, “
A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets
,”
J. Micromech. Microeng.
21
,
054031
(
2011
).
29.
D.
Kiriya
,
M.
Ikeda
,
H.
Onoe
,
M.
Takinoue
,
H.
Komatsu
,
Y.
Shimoyama
,
I.
Hamachi
, and
S.
Takeuchi
, “
Meter-long and robust supramolecular strands encapsulated in hydrogel jackets
,”
Angew. Chem. Int. Ed.
51
,
1553
1557
(
2012
).
30.
W.
Kang
, “Moving image pickup apparatus, method for observing moving image, moving image observing program, and computer-readable recording medium,” U.S. patent 9046757B2 (2015), see https://www.google.com/patents/US9046757.
31.
N.-T.
Nguyen
and
S. T.
Wereley
,
Fundamentals and Applications of Microfluidics
(
Artech House
,
2002
).
32.
N.
Li
,
C.-H.
Hsu
, and
A.
Folch
, “
Parallel mixing of photolithographically defined nanoliter volumes using elastomeric microvalve arrays
,”
Electrophoresis
26
,
3758
3764
(
2005
).
33.
Y.
Jun
,
E.
Kang
,
S.
Chae
, and
S.-H.
Lee
, “
Microfluidic spinning of micro- and nano-scale fibers for tissue engineering
,”
Lab Chip
14
,
2145
2160
(
2014
).
34.
H.
Onoe
and
S.
Takeuchi
, “
Cell-laden microfibers for bottom-up tissue engineering
,”
Drug Discov. Today
20
,
236
246
(
2015
).
35.
H.
Onoe
,
T.
Okitsu
,
A.
Itou
,
M.
Kato-Negishi
,
R.
Gojo
,
D.
Kiriya
,
K.
Sato
,
S.
Miura
,
S.
Iwanaga
,
K.
Kuribayashi-Shigetomi
,
Y. T.
Matsunaga
,
Y.
Shimoyama
, and
S.
Takeuchi
, “
Metre-long cell-laden microfibres exhibit tissue morphologies and functions
,”
Nat. Mater.
12
,
584
590
(
2013
).
36.
E.
Kang
,
G. S.
Jeong
,
Y. Y.
Choi
,
K. H.
Lee
,
A.
Khademhosseini
, and
S.-H.
Lee
, “
Digitally tunable physicochemical coding of material composition and topography in continuous microfibres
,”
Nat. Mater.
10
,
877
883
(
2011
).
37.
E.
Kang
,
S.-J.
Shin
,
K. H.
Lee
, and
S.-H.
Lee
, “
Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles
,”
Lab Chip
10
,
1856
1861
(
2010
).
38.
M.
Nie
,
S.
Nagata
,
H.
Aoyagi
,
A.
Itou
,
A.
Shima
, and
S.
Takeuchi
, “
Cell-laden microfibers fabricated using μl cell-suspension
,”
Biofabrication
12
,
045021
(
2020
).
39.
W.
Liu
,
Y. S.
Zhang
,
M. A.
Heinrich
,
F.
De Ferrari
,
H. L.
Jang
,
S. M.
Bakht
,
M. M.
Alvarez
,
J.
Yang
,
Y.-C.
Li
,
G.
Trujillo-de Santiago
,
A. K.
Miri
,
K.
Zhu
,
P.
Khoshakhlagh
,
G.
Prakash
,
H.
Cheng
,
X.
Guan
,
Z.
Zhong
,
J.
Ju
,
G. H.
Zhu
,
X.
Jin
,
S. R.
Shin
,
M. R.
Dokmeci
, and
A.
Khademhosseini
, “
Rapid continuous multimaterial extrusion bioprinting
,”
Adv. Mater.
29
,
1601759
(
2016
).

Supplementary Material

You do not currently have access to this content.