We introduce the concept of Flowing Droplet Interface Bilayers (FDIBs) that are made of two droplets maintained in contact due to the presence of an adhesive lipidic surfactant. This system is similar to a flowing dumbbell made of two droplets interconnected by a lipid bilayer and driven by an external flow. Interestingly, such a dumbbell does not show a straight flow trajectory, but it oscillates between the sidewalls while moving along the microchannel. The origin of this unusual motion is hydrodynamic interactions, as demonstrated by analytical calculations and micro particle image velocimentry (µPiV) measurements. The hydrodynamic motion appears to be highly sensitive to the mechanical properties of the lipid bilayer connecting the two droplets (FDIB). Thus, droplet trajectories can be controlled by tuning the lipid bilayer composition, which enables in turn investigating mechanical properties of free-standing lipid bilayers.

1.
H.
Bayley
,
B.
Cronin
,
A.
Heron
,
M. A.
Holden
,
W. L.
Hwang
,
R.
Syeda
,
J.
Thompson
, and
M.
Wallace
, “
Droplet interface bilayers
,”
Mol. BioSyst.
4
,
1191
1208
(
2008
).
2.
M.-A.
Nguyen
,
B.
Srijanto
,
C. P.
Collier
,
S. T.
Retterer
, and
S. A.
Sarles
, “
Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays
,”
Lab Chip
16
,
3576
3588
(
2016
).
3.
M. J.
Booth
,
V. R.
Schild
,
A. D.
Graham
,
S. N.
Olof
, and
H.
Bayley
, “
Light-activated communication in synthetic tissues
,”
Sci. Adv.
2
,
e1600056
(
2016
).
4.
M. P.
Heyn
, “
Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments
,”
FEBS Lett.
108
,
359
364
(
1979
).
5.
J. R.
Thompson
,
A. J.
Heron
,
Y.
Santoso
, and
M. I.
Wallace
, “
Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion
,”
Nano Lett.
7
(
12
),
3875
3878
(
2007
).
6.
N. E.
Barlow
,
G.
Bolognesi
,
S.
Haylock
,
A. J.
Flemming
,
N. J.
Brooks
,
L. M. C.
Barter
, and
O.
Ces
, “
Rheological droplet interface bilayers (rheo-DIBs): Probing the unstirred water layer effect on membrane permeability via spinning disk induced shear stress
,”
Sci. Rep.
7
(
1
),
17551
(
2017
).
7.
H.
Stauber
,
D.
Waisman
,
N.
Korin
, and
J.
Sznitman
, “
Red blood cell dynamics in biomimetic microfluidic networks of pulmonary alveolar capillaries
,”
Biomicrofluidics
11
,
014103
(
2017
).
8.
T.
Beatus
,
I.
Shani
,
R. H.
Bar-Ziv
, and
T.
Tlusty
, “
Two-dimensional flow of driven particles: A microfluidic pathway to the non-equilibrium frontier
,”
Chem. Soc. Rev.
46
,
5620
5646
(
2017
).
9.
T.
Beatus
,
T.
Tlusty
, and
R.
Bar-Ziv
, “
Phonons in a one-dimensional microfluidic crystal
,”
Nat. Phys.
2
,
743
(
2006
).
10.
R.
Dimova
, “
Giant vesicles and their use in assays for assessing membrane phase state, curvature, mechanics, and electrical properties
,”
Annu. Rev. Biophys.
48
,
93
119
(
2019
).
11.
H.
Faizi
,
S.
Frey
,
J.
Steinkühler
,
R.
Dimova
, and
P.
Vlahovska
, “
Bending rigidity of charged lipid bilayer membranes
,”
Soft Matter
15
,
6006
6013
(
2019
).
12.
J.
Nagle
, “
Introductory lecture: Basic quantities in model biomembranes
,”
Faraday Discuss.
161
,
11
29
(
2013
).
13.
J.-B.
Fleury
,
U. D.
Schiller
,
S.
Thutupalli
,
G.
Gompper
, and
R.
Seemann
, “
Mode coupling of phonons in a dense one dimensional microfluidic crystal
,”
New J. Phys.
16
,
063029
(
2014
).
14.
U. D.
Schiller
,
J.-B.
Fleury
,
R.
Seemann
, and
G.
Gompper
, “
Collective waves in dense and confined microfluidic droplet arrays
,”
Soft Matter
15
,
5850
(
2015
).
15.
S.
Thutupalli
,
J.-B.
Fleury
,
A.
Steinberger
,
S.
Herminghaus
, and
R.
Seemann
, “
Why can artificial membranes be fabricated so rapidly in microfluidics?
,”
Chem. Commun.
49
,
1443
(
2013
).
16.
C.
Stubenrauch
and
R.
von Klitzing
, “
Disjoining pressure in thin liquid foams and emulsion films—New concepts and perspectives
,”
J. Phys.: Condens. Matter
15
,
R1197
R1232
(
2003
).
17.
Z.
Liu
et al., “
Droplet based electro-coalescence for probing threshold disjoining pressure
,”
Lab Chip
15
,
2018
2024
(
2015
).
18.
W. E.
Uspal
,
H.
Burak Eral
, and
P. S.
Doyle
, “
Engineering particle trajectories in microfluidic flows using particle shape
,”
Nat. Commun.
4
,
2666
(
2013
).
19.
B.
Shen
,
M.
Leman
,
M.
Reyssat
, and
P.
Tabeling
, “
Dynamics of a small number of droplets in microfluidic Hele-Shaw cells
,”
Exp. Fluids
55
,
1728
(
2014
).
20.
W.
Rawicz
et al., “
Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids
,”
Biophys. J.
94
,
12
(
2008
).
21.
W. R.
Redwood
,
F. R.
Pfeiffer
,
J. A.
Weisbach
, and
T. E.
Thompson
, “
Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane
,”
Biochim. Biophys. Acta
233
,
1
6
(
1971
).
22.
W.
Shinoda
,
K.
Shinoda
,
T.
Baba
, and
M.
Mikami
, “
Molecular dynamics study of bipolar tetraether lipid membranes
,”
Biophys. J.
89
(
5
),
3195
3202
(
2005
).
23.
V.
Chokkalingam
,
S.
Herminghaus
, and
R.
Seemann
, “
Self-synchronizing pairwise production of monodisperse droplets by microfluidic step emulsification
,”
Appl. Phys. Lett.
93
,
254101
(
2008
).
You do not currently have access to this content.