Cancer metastasis, which is prevalent in malignant tumors, is present in a variety of cases depending on the primary tumor and metastatic site. The cancer metastasis is affected by various factors that surround and constitute a tumor microenvironment. One of the several factors, oxygen tension, can affect cancer cells and induce changes in many ways, including motility, directionality, and viability. In particular, the oxygen tension gradient is formed within a tumor cluster and oxygen is lower toward the center of the cluster from the perivascular area. The simple and efficient designing of the tumor microenvironment using microfluidic devices enables the simplified and robust platform of the complex in vivo microenvironment while observing a clear cause-and-effect between the properties of cancer cells under oxygen tension. Here, a microfluidic device with five channels including a gel channel, media channels, and gas channels is designed. MDA-MB-231cells are seeded in the microfluidic device with hydrogel to simulate their three-dimensional movement in the body. The motility and directionality of the cancer cells under the normoxic and oxygen tension gradient conditions are compared. Also, the viability of the cancer cells is analyzed for each condition when anticancer drugs are applied. Unlike the normoxic condition, under the oxygen tension gradient, cancer cells showed directionality toward higher oxygen tension and decreased viability against the certain anticancer drug. The simplified design of the tumor microenvironment through microfluidic devices enables comprehension of the response of cancer cells to varying oxygen tensions and cancer drugs in the hypoxic tumor microenvironment.

1.
G.
Disibio
and
S. W.
French
,
Arch. Pathol. Lab. Med.
132
(
6
),
931
939
(
2008
).
2.
A. B.
Mariotto
,
K.
Robin Yabroff
,
Y.
Shao
,
E. J.
Feuer
, and
M. L.
Brown
,
J. Natl. Cancer Inst.
103
(
2
),
117
128
(
2011
).
3.
A.
Mullard
,
Nat. Rev. Drug Discovery
15
(
5
),
299
(
2016
).
4.
B. J.
Vakoc
,
R. M.
Lanning
,
J. A.
Tyrrell
,
T. P.
Padera
,
L. A.
Bartlett
,
T.
Stylianopoulos
,
L. L.
Munn
,
G. J.
Tearney
,
D.
Fukumura
, and
R. K.
Jain
,
Nat. Med.
15
(
10
),
1219
1223
(
2009
).
5.
F. R.
Balkwill
,
M.
Capasso
, and
T.
Hagemann
,
J. Cell Sci.
125
(
23
),
5591
5596
(
2012
).
6.
X.
Lu
and
Y.
Kang
,
Clin. Cancer Res.
16
(
24
),
5928
5935
(
2010
).
7.
I. F.
Tannock
,
Cancer Metastasis Rev.
20
(
1–2
),
123
132
(
2001
).
8.
V.
Petrova
,
M.
Annicchiarico-Petruzzelli
,
G.
Melino
, and
I.
Amelio
,
Oncogenesis
7
(
1
),
1
13
(
2018
).
9.
R. A.
Cairns
,
T.
Kalliomaki
, and
R. P.
Hill
,
Cancer Res.
61
(
24
),
8903
8908
(
2001
).
10.
J.
Chen
,
N.
Imanaka
, and
J.
Griffin
,
Br. J. Cancer
102
(
2
),
351
360
(
2010
).
11.
A.
Nagelkerke
,
J.
Bussink
,
H.
Mujcic
,
B. G.
Wouters
,
S.
Lehmann
,
F. C.
Sweep
, and
P. N.
Span
,
Breast Cancer Res.
15
(
1
),
R2
(
2013
).
12.
Z.
Wang
,
Z.
Liu
,
L.
Li
, and
Q.
Liang
,
Microfluid. Nanofluid.
19
(
6
),
1271
1279
(
2015
).
13.
L.
Wang
,
W.
Liu
,
Y.
Wang
,
J.-C.
Wang
,
Q.
Tu
,
R.
Liu
, and
J.
Wang
,
Lab Chip
13
(
4
),
695
705
(
2013
).
14.
W. J.
Polacheck
,
J. L.
Charest
, and
R. D.
Kamm
,
Proc. Natl. Acad. Sci. U.S.A.
108
(
27
),
11115
11120
(
2011
).
15.
S.
Lim
,
H.
Nam
, and
J. S.
Jeon
,
Biophys. J.
115
(
10
),
2034
2043
(
2018
).
16.
J. T.
Price
,
T.
Tiganis
,
A.
Agarwal
,
D.
Djakiew
, and
E. W.
Thompson
,
Cancer Res.
59
(
21
),
5475
5478
(
1999
).
17.
L.
Gómez-Cuadrado
,
N.
Tracey
,
R.
Ma
,
B.
Qian
, and
V. G.
Brunton
,
Dis. Models Mech.
10
(
9
),
1061
1074
(
2017
).
18.
N. E.
Sharpless
and
R. A.
DePinho
,
Nat. Rev. Drug Discovery
5
(
9
),
741
754
(
2006
).
19.
B. M.
Baker
and
C. S.
Chen
,
J. Cell Sci.
125
(
13
),
3015
3024
(
2012
).
20.
Y.
Imamura
,
T.
Mukohara
,
Y.
Shimono
,
Y.
Funakoshi
,
N.
Chayahara
,
M.
Toyoda
,
N.
Kiyota
,
S.
Takao
,
S.
Kono
, and
T.
Nakatsura
,
Oncol. Rep.
33
(
4
),
1837
1843
(
2015
).
21.
A. M.
Ghaemmaghami
,
M. J.
Hancock
,
H.
Harrington
,
H.
Kaji
, and
A.
Khademhosseini
,
Drug Discovery Today
17
(
3–4
),
173
181
(
2012
).
22.
A. G.
Toh
,
Z.
Wang
,
C.
Yang
, and
N.-T.
Nguyen
,
Microfluid. Nanofluid.
16
(
1–2
),
1
18
(
2014
).
23.
M. B.
Byrne
,
M. T.
Leslie
,
H. R.
Gaskins
, and
P. J.
Kenis
,
Trends Biotechnol.
32
(
11
),
556
563
(
2014
).
24.
M.
Adler
,
M.
Polinkovsky
,
E.
Gutierrez
, and
A.
Groisman
,
Lab Chip
10
(
3
),
388
391
(
2010
).
25.
M.
Polinkovsky
,
E.
Gutierrez
,
A.
Levchenko
, and
A.
Groisman
,
Lab Chip
9
(
8
),
1073
1084
(
2009
).
26.
K.
Funamoto
,
I. K.
Zervantonakis
,
Y.
Liu
,
C. J.
Ochs
,
C.
Kim
, and
R. D.
Kamm
,
Lab Chip
12
(
22
),
4855
4863
(
2012
).
27.
M. L.
Rexius-Hall
,
G.
Mauleon
,
A. B.
Malik
,
J.
Rehman
, and
D. T.
Eddington
,
Lab Chip
14
(
24
),
4688
4695
(
2014
).
28.
G.
Helmlinger
,
F.
Yuan
,
M.
Dellian
, and
R. K.
Jain
,
Nat. Med.
3
(
2
),
177
182
(
1997
).
29.
D.
Yoshino
and
K.
Funamoto
,
AIP Adv.
9
(
4
),
045215
(
2019
).
30.
Y.-A.
Chen
,
A. D.
King
,
H.-C.
Shih
,
C.-C.
Peng
,
C.-Y.
Wu
,
W.-H.
Liao
, and
Y.-C.
Tung
,
Lab Chip
11
(
21
),
3626
3633
(
2011
).
31.
G.
Wang
,
T. K.
Hazra
,
S.
Mitra
,
H.-M.
Lee
, and
E. W.
Englander
,
Nucleic Acids Res.
28
(
10
),
2135
2140
(
2000
).
32.
C.-C.
Peng
,
W.-H.
Liao
,
Y.-H.
Chen
,
C.-Y.
Wu
, and
Y.-C.
Tung
,
Lab Chip
13
(
16
),
3239
3245
(
2013
).
33.
L.
Smith
,
M. B.
Watson
,
S. L.
O’Kane
,
P. J.
Drew
,
M. J.
Lind
, and
L.
Cawkwell
,
Mol. Cancer Ther.
5
(
8
),
2115
2120
(
2006
).
34.
M. C.
Brahimi-Horn
and
J.
Pouysségur
,
J. Cell Sci.
122
(
8
),
1055
1057
(
2009
).
35.
S.-O.
Yoon
,
S.
Shin
, and
A. M.
Mercurio
,
Cancer Res.
65
(
7
),
2761
2769
(
2005
).
36.
D. M.
Gilkes
,
S.
Bajpai
,
P.
Chaturvedi
,
D.
Wirtz
, and
G. L.
Semenza
,
J. Biol. Chem.
288
(
15
),
10819
10829
(
2013
).
37.
M. H.
Zaman
,
L. M.
Trapani
,
A. L.
Sieminski
,
D.
MacKellar
,
H.
Gong
,
R. D.
Kamm
,
A.
Wells
,
D. A.
Lauffenburger
, and
P.
Matsudaira
,
Proc. Natl. Acad. Sci. U.S.A.
103
(
29
),
10889
10894
(
2006
).
38.
P.
Vaupel
,
F.
Kallinowski
, and
P.
Okunieff
,
Cancer Res.
49
(
23
),
6449
6465
(
1989
).
39.
S. M.
Ehsan
,
K. M.
Welch-Reardon
,
M. L.
Waterman
,
C. C.
Hughes
, and
S. C.
George
,
Integr. Biol.
6
(
6
),
603
610
(
2014
).
40.
R. K.
Paradise
,
M. J.
Whitfield
,
D. A.
Lauffenburger
, and
K. J.
Van Vliet
,
Exp. Cell Res.
319
(
4
),
487
497
(
2013
).
41.
J.
Pouysségur
,
F.
Dayan
, and
N. M.
Mazure
,
Nature
441
(
7092
),
437
443
(
2006
).
42.
S. J.
Welsh
and
G.
Powis
,
Curr. Cancer Drug Targets
3
(
6
),
391
405
(
2003
).
43.
A.
Giaccia
,
B. G.
Siim
, and
R. S.
Johnson
,
Nat. Rev. Drug Discovery
2
(
10
),
803
811
(
2003
).
44.
C.-W.
Chang
,
Y.-J.
Cheng
,
M.
Tu
,
Y.-H.
Chen
,
C.-C.
Peng
,
W.-H.
Liao
, and
Y.-C.
Tung
,
Lab Chip
14
(
19
),
3762
3772
(
2014
).
45.
B.
Mosadegh
,
M. R.
Lockett
,
K. T.
Minn
,
K. A.
Simon
,
K.
Gilbert
,
S.
Hillier
,
D.
Newsome
,
H.
Li
,
A. B.
Hall
, and
D. M.
Boucher
,
Biomaterials
52
,
262
271
(
2015
).
46.
R.
Born
and
H.
Eichholtz-Wirth
,
Br. J. Cancer
44
(
2
),
241
246
(
1981
).
47.
R.
Koens
,
Y.
Tabata
,
J. C.
Serrano
,
S.
Aratake
,
D.
Yoshino
,
R. D.
Kamm
, and
K.
Funamoto
,
APL BioEng.
4
(
1
),
016106
(
2020
).

Supplementary Material

You do not currently have access to this content.