Micropipette aspiration, optical tweezers, rheometry, or ecktacytometry have been used to study the shape recovery of healthy human Red Blood Cells (RBCs) and measure associated relaxation times of the order of 100–300 ms. These measurements are in good agreement with the Kelvin–Voigt model, which describes the cell as a visco-elastic material, predicting that its relaxation time only depends on cell intrinsic properties. However, such mechanical solicitation techniques are far from being relevant regarding RBC solicitation in vivo. In this paper, we report for the first time the existence of two different behaviors of the RBC shape recovery while flowing out of a microfluidic constricted channel. The calculation of the viscous stress corresponding to the frontier between the two recovery modes confirms that the RBC resistance to shear μ is the elastic property dominating the transition between the two recovery behaviors. We also quantified associated recovery times τr and report values as low as 4 ms—which is almost two decades smaller than the typical RBC relaxation time—at high viscosity and flow velocity of the carrier fluid. Although we cannot talk about relaxation time because the cell is never at rest, we believe that the measured shape recovery time arises from the coupling of the cell intrinsic deformability and the hydrodynamic stress. Depending on the flow conditions, the cell mechanics becomes dominant and drives the shape recovery process, allowing the measurement of recovery times of the same order of magnitude than relaxation times previously published. Finally, we demonstrated that the measurement of the shape recovery time can be used to distinguish Plasmodium falciparum (causing malaria) infected RBCs from healthy RBCs.

1.
N.
Mohandas
and
E.
Evans
, “
Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects
,”
Annu. Rev. Biophys. Biomol. Struct.
23
,
787
818
(
1994
).
2.
E. A.
Evans
and
R. M.
Hochmuth
, “
Membrane viscoelasticity
,”
Biophys. J.
16
,
1
11
(
1976
).
3.
R. M.
Hochmuth
,
P. R.
Worthy
, and
E. A.
Evans
, “
Red cell extensional recovery and the determination of membrane viscosity
,”
Biophys. J.
26
,
101
114
(
1979
).
4.
H.
Engelhardt
and
E.
Sackmann
, “
On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields
,”
Biophys. J.
54
,
495
508
(
1988
).
5.
R.
Waugh
and
R. M.
Hochmuth
, “
Erythrocyte membrane elasticity and viscosity
,”
Annu. Rev. Physiol.
49
,
209
219
(
1987
).
6.
S.
Chien
,
K.-L. P.
Song
,
R.
Skalak
, and
S.
Usami
, “
Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane
,”
Biophys. J.
24
,
463
487
(
1978
).
7.
R.
Waugh
and
E. A.
Evans
, “
Thermoelasticity of red blood cell membrane
,”
Biophys. J.
26
,
115
131
(
1979
).
8.
G. B.
Nash
and
H. J.
Meiselman
, “
Red cell and ghost viscoelasticity. effects of haemoglobin concentration and in vivo aging
,”
Biophys. J.
43
,
63
73
(
1983
).
9.
G.
Tomaiuolo
and
S.
Guido
, “
Start-up shape dynamics of red blood cells in microcapillary flow
,”
Microvasc. Res.
82
,
35
41
(
2011
).
10.
R. M.
Hochmuth
,
N.
Mohandas
, and
P. L.
Blackshear Jr.
, “
Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique
,”
Biophys. J.
13
,
747
761
(
1973
).
11.
E. A.
Evans
, “
Structure and deformation properties of red blood cells: Concepts and quantitative methods
,”
Meth. Enzymol.
173
,
3
35
(
1989
).
12.
O.
Linderkamp
and
H. J.
Meiselman
, “
Geometric, osmotic, and membrane mechanical properties of density-separated human red cells
,”
Blood
59
,
1121
1127
(
1982
).
13.
K.
Svoboda
,
C. F.
Schmidt
,
D.
Branton
, and
S. M.
Block
, “
Conformation and elasticity of the isolated red blood cell membrane skeleton
,”
Biophys. J.
63
,
784
793
(
1992
).
14.
H.
Engelhardt
,
H.
Gaud
, and
E.
Sackmann
, “
Viscoelastic properties of erythrocyte membranes in high-frequency electric fields
,”
Nature
307
,
378
380
(
1984
).
15.
S. P.
Sutera
,
R. A.
Gardner
,
C. W.
Boylan
,
G. L.
Carroll
,
K. C.
Chang
,
J. S.
Marvel
,
C.
Kilo
,
B.
Gonen
, and
J. R.
Williamson
, “
Age related changes in deformability of human erythrocytes
,”
Blood
65
,
275
282
(
1985
).
16.
J. R.
Williamson
,
R. A.
Gardner
,
C. W.
Boylan
,
G. L.
Caroll
,
K.
Chang
,
J. S.
Marvel
,
B.
Gonen
,
C.
Kilo
,
R.
Tran-Son-Tay
, and
S. P.
Sutera
, “
Microrheologic investigation of erythrocyte deformability in diabetes mellitus
,”
Blood
65
,
283
288
(
1985
).
17.
N.
Mohandas
,
M. R.
Clark
,
M. S.
Jacobs
, and
S. B.
Shohet
, “
Analysis of factors regulating erythrocyte deformability
,”
J. Clin. Invest.
66
,
563
573
(
1980
).
18.
S.
Braunmüller
,
L.
Schmid
,
E.
Sackmann
, and
T.
Franke
, “
Hydrodynamic deformation reveals two coupled modes/times scales of red blood cell relaxation
,”
Soft Matter
8
,
11240
11248
(
2012
).
19.
D. C.
Duffy
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
,”
Anal. Chem.
70
,
4974
4984
(
2004
).
20.
W.
Trager
and
J. B.
Jensen
, “
Human malaria parasites in continuous culture
,”
Science
193
,
673
675
(
1976
).
21.
S.
Kutner
,
W. V.
Breuer
,
H.
Ginsburg
,
S. B.
Aley
, and
Z. I.
Cabantchik
, “
Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of plasmodium falciparum: Association with parasite development
,”
J. Cell. Physiol.
125
,
521
527
(
1985
).
22.
G.
Blankenstein
and
U.
Larsen
, “
Modular concept of a laboratory on a chip for chemical and biochemical analysis
,”
Biosens. Bioelectron.
13
,
427
438
(
1998
).
23.
L.
Rico
,
J.
Juncá
,
M.
Ward
,
J.
Bradford
,
J.
Bardina
, and
J.
Petriz
, “
Acoustophoretic orientation of red blood cells for diagnosis of red cell health and pathology
,”
Sci. Rep.
8
,
15705
(
2018
).
24.
D.
Schrum
,
C.
Culbertson
,
S.
Jacobson
, and
J.
Ramsey
, “
Microchip flow cytometry using electrokinetic focusing
,”
Anal. Chem.
71
,
4173
4177
(
1999
).
25.
Y.
Kim
and
J.
Yoo
, “
Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications
,”
Biosens. Bioelectron.
24
,
3677
3682
(
2009
).
26.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
, “
Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma
,”
Biorheology
43
,
147
159
(
2006
).
27.
A.
Abay
,
S.
Recktenwald
,
T.
John
,
L.
Kaestner
, and
C.
Wagne
, “
Cross-sectional focusing of red blood cells in a constricted microfluidic channel
,”
Soft Matter
16
,
534
543
(
2020
).
28.
C.
Tsai
,
S.
Sakuma
,
F.
Arai
,
T.
Taniguchi
,
T.
Ohtani
,
Y.
Sakata
, and
M.
Kaneko
, “
Geometrical alignment for improving cell evaluation in a microchannel with application on multiple myeloma red blood cells
,”
RSC Adv.
4
,
45050
45058
(
2014
).
29.
G.
Tomaiuolo
,
M.
Barra
,
V.
Preziosi
,
A.
Cassinese
,
B.
Rotoli
, and
S.
Guido
, “
Microfluidics analysis of red blood cell membrane viscosity
,”
Lab Chip
11
,
449
454
(
2011
).
30.
E. A.
Evans
, “
Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests
,”
Biophys. J.
43
,
27
30
(
1983
).
31.
E. A.
Evans
, “
New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells
,”
Biophys. J.
13
(
9
),
941
954
(
1973
).
32.
S.
Hénon
,
G.
Lenormand
,
A.
Richert
, and
F.
Gallet
, “
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers
,”
Biophys. J.
76
,
1145
1151
(
1999
).
33.
G.
Prado
,
A.
Farutin
,
C.
Misbah
, and
L.
Bureau
, “
Viscoelastic transient of confined red blood cells
,”
Biophys. J.
108
,
2126
2136
(
2015
).
34.
O. K.
Baskurt
and
H. J.
Meiselman
, “
Determination of red blood cell shape recovery time constant in a couette system by the analysis of light reflectance and ektacytometry
,”
Biorheology
33
,
489
503
(
1996
).

Supplementary Material

You do not currently have access to this content.