Recently, the use of 3D printing technologies has become prevalent in microfluidic applications. Although these technologies enable low-cost, rapid, and easy fabrication of microfluidic devices, fabricated devices suffer from optical opaqueness that inhibits their use for microscopic imaging. This study investigates bonding strategies using polydimethylsiloxane (PDMS) and printer resin as interlayer materials to fabricate high-strength optically transparent 3D-printed microfluidic devices. First, we fabricated microfluidic structures using a stereolithography 3D printer. We placed 3D-printed structures on interlayer materials coated surfaces. Then, we either let these 3D-printed structures rest on the coated slides or transferred them to new glass slides. We achieved bonding between 3D-printed structures and glass substrates with UV exposure for resin and with elevated temperature for PDMS interlayer materials. Bonding strength was investigated for different interlayer material thicknesses. We also analyzed the bright-field and fluorescence imaging capability of microfluidic devices fabricated using different bonding strategies. We achieve up to twofold (9.1 bar) improved bonding strength and comparable fluorescence sensitivity with respect to microfluidic devices fabricated using the traditional plasma activated PDMS-glass bonding method. Although stereolithography 3D printer allows fabrication of enclosed channels having dimensions down to ∼600 μm, monolithic transparent microfluidic channels with 280 × 110 μm2 cross section can be realized using adhesive interlayers. Furthermore, 3D-printed microfluidic chips can be integrated successfully with Protein-G modified substrates using resin interlayers for detection of fluorescent-labeled immunoglobulin down to ∼30 ng/ml. Hence, this strategy can be applied to fabricate high-strength and transparent microfluidic chips for various optical imaging applications including biosensing.

1.
C. M. B.
Ho
,
S. H.
Ng
,
K. H. H.
Li
, and
Y.-J.
Yoon
, “
3D printed microfluidics for biological applications
,”
Lab Chip
15
(
18
),
3627
3637
(
2015
).
2.
S.
Ng
and
Z.
Wang
, “
Hot roller embossing for microfluidics: Process and challenges
,”
Microsyst. Technol.
15
(
8
),
1149
1156
(
2009
).
3.
H. C.
Tekin
,
V.
Sivagnanam
,
A. T.
Ciftlik
,
A.
Sayah
,
C.
Vandevyver
, and
M. A.
Gijs
, “
Chaotic mixing using source–sink microfluidic flows in a PDMS chip
,”
Microfluid. Nanofluid.
10
(
4
),
749
759
(
2011
).
4.
A. K.
Au
,
N.
Bhattacharjee
,
L. F.
Horowitz
,
T. C.
Chang
, and
A.
Folch
, “
3D-printed microfluidic automation
,”
Lab Chip
15
(
8
),
1934
1941
(
2015
).
5.
Y.
Hwang
,
O. H.
Paydar
, and
R. N.
Candler
, “
3D printed molds for non-planar PDMS microfluidic channels
,”
Sens. Actuators A
226
,
137
142
(
2015
).
6.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Angew. Chem. Int. Ed.
37
(
5
),
550
575
(
1998
).
7.
I. E.
Araci
and
S. R.
Quake
, “
Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves
,”
Lab Chip
12
(
16
),
2803
2806
(
2012
).
8.
H. C.
Tekin
,
M.
Cornaglia
, and
M. A.
Gijs
, “
Attomolar protein detection using a magnetic bead surface coverage assay
,”
Lab Chip
13
(
6
),
1053
1059
(
2013
).
9.
R.
Sochol
,
E.
Sweet
,
C.
Glick
,
S.
Venkatesh
,
A.
Avetisyan
,
K.
Ekman
,
A.
Raulinaitis
,
A.
Tsai
,
A.
Wienkers
, and
K.
Korner
, “
3D printed microfluidic circuitry via multijet-based additive manufacturing
,”
Lab Chip
16
(
4
),
668
678
(
2016
).
10.
D.
Qin
,
Y.
Xia
, and
G. M.
Whitesides
, “
Soft lithography for micro-and nanoscale patterning
,”
Nat. Protoc.
5
(
3
),
491
(
2010
).
11.
R.
Amin
,
S.
Knowlton
,
A.
Hart
,
B.
Yenilmez
,
F.
Ghaderinezhad
,
S.
Katebifar
,
M.
Messina
,
A.
Khademhosseini
, and
S.
Tasoglu
, “
3D-printed microfluidic devices
,”
Biofabrication
8
(
2
),
022001
(
2016
).
12.
A. I.
Shallan
,
P.
Smejkal
,
M.
Corban
,
R. M.
Guijt
, and
M. C.
Breadmore
, “
Cost-effective three-dimensional printing of visibly transparent microchips within minutes
,”
Anal. Chem.
86
(
6
),
3124
3130
(
2014
).
13.
S.
Waheed
,
J. M.
Cabot
,
N. P.
Macdonald
,
T.
Lewis
,
R. M.
Guijt
,
B.
Paull
, and
M. C.
Breadmore
, “
3D printed microfluidic devices: Enablers and barriers
,”
Lab Chip
16
(
11
),
1993
2013
(
2016
).
14.
B. C.
Gross
,
J. L.
Erkal
,
S. Y.
Lockwood
,
C.
Chen
, and
D. M.
Spence
,
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
(
ACS Publications
,
2014
).
15.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
, “
The upcoming 3D-printing revolution in microfluidics
,”
Lab Chip
16
(
10
),
1720
1742
(
2016
).
16.
K. G.
Lee
,
K. J.
Park
,
S.
Seok
,
S.
Shin
,
J. Y.
Park
,
Y. S.
Heo
,
S. J.
Lee
, and
T. J.
Lee
, “
3D printed modules for integrated microfluidic devices
,”
RSC Adv.
4
(
62
),
32876
32880
(
2014
).
17.
K. B.
Anderson
,
S. Y.
Lockwood
,
R. S.
Martin
, and
D. M.
Spence
, “
A 3D printed fluidic device that enables integrated features
,”
Anal. Chem.
85
(
12
),
5622
5626
(
2013
).
18.
J. M.
Lee
,
M.
Zhang
, and
W. Y.
Yeong
, “
Characterization and evaluation of 3D printed microfluidic chip for cell processing
,”
Microfluid. Nanofluid.
20
(
1
),
5
(
2016
).
19.
C.
Chen
,
B. T.
Mehl
,
A. S.
Munshi
,
A. D.
Townsend
,
D. M.
Spence
, and
R. S.
Martin
, “
3D-printed microfluidic devices: Fabrication, advantages and limitations—a mini review
,”
Anal. Methods
8
(
31
),
6005
6012
(
2016
).
20.
F.
Li
,
N. P.
Macdonald
,
R. M.
Guijt
, and
M. C.
Breadmore
, “
Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing
,”
Lab Chip
19
(
1
),
35
49
(
2019
).
21.
B. C.
Gross
,
K. B.
Anderson
,
J. E.
Meisel
,
M. I.
McNitt
, and
D. M.
Spence
, “
Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis
,”
Anal. Chem.
87
(
12
),
6335
6341
(
2015
).
22.
V.
Romanov
,
R.
Samuel
,
M.
Chaharlang
,
A. R.
Jafek
,
A.
Frost
, and
B. K.
Gale
, “
FDM 3d printing of high-pressure, heat-resistant, transparent microfluidic devices
,”
Anal. Chem.
90
(
17
),
10450
10456
(
2018
).
23.
A. K.
Au
,
W.
Lee
, and
A.
Folch
, “
Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
,”
Lab Chip
14
(
7
),
1294
1301
(
2014
).
24.
F.
Kotz
,
P.
Risch
,
D.
Helmer
, and
B. E.
Rapp
, “
Highly fluorinated methacrylates for optical 3D printing of microfluidic devices
,”
Micromachines
9
(
3
),
115
(
2018
).
25.
H.
Gong
,
M.
Beauchamp
,
S.
Perry
,
A. T.
Woolley
, and
G. P.
Nordin
, “
Optical approach to resin formulation for 3D printed microfluidics
,”
RSC Adv.
5
(
129
),
106621
106632
(
2015
).
26.
C. I.
Rogers
,
K.
Qaderi
,
A. T.
Woolley
, and
G. P.
Nordin
, “
3D printed microfluidic devices with integrated valves
,”
Biomicrofluidics
9
(
1
),
016501
(
2015
).
27.
N.
Bhattacharjee
,
C.
Parra-Cabrera
,
Y. T.
Kim
,
A. P.
Kuo
, and
A.
Folch
, “
Desktop-stereolithography 3D-printing of a poly (dimethylsiloxane)-based material with sylgard-184 properties
,”
Adv. Mater.
30
(
22
),
1800001
(
2018
).
28.
F.
Kotz
,
K.
Arnold
,
W.
Bauer
,
D.
Schild
,
N.
Keller
,
K.
Sachsenheimer
,
T. M.
Nargang
,
C.
Richter
,
D.
Helmer
, and
B. E.
Rapp
, “
Three-dimensional printing of transparent fused silica glass
,”
Nature
544
(
7650
),
337
339
(
2017
).
29.
L. J. Y.
Ong
,
A.
Islam
,
R.
DasGupta
,
N. G.
Iyer
,
H. L.
Leo
, and
Y.-C.
Toh
, “
A 3D printed microfluidic perfusion device for multicellular spheroid cultures
,”
Biofabrication
9
(
4
),
045005
(
2017
).
30.
J.
Cheon
and
S.
Kim
, “
Intermediate layer-based bonding techniques for polydimethylsiloxane/digital light processing 3D-printed microfluidic devices
,”
J. Micromech. Microeng.
29
(
9
), 095005 (
2019
).
31.
S.
Zips
,
O. J.
Wenzel
,
P.
Rinklin
,
L.
Grob
,
K.
Terkan
,
N. Y.
Adly
,
L.
Weiß
, and
B.
Wolfrum
, “
Direct stereolithographic 3D printing of microfluidic structures on polymer substrates for printed electronics
,”
Adv. Mater. Technol.
4
(
3
),
1800455
(
2019
).
32.
E.
Wilhelm
,
C.
Neumann
,
K.
Sachsenheimer
,
T.
Schmitt
,
K.
Länge
, and
B. E.
Rapp
, “
Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer
,”
Lab Chip
13
(
12
),
2268
2271
(
2013
).
33.
E.
Hamad
,
S.
Bilatto
,
N.
Adly
,
D.
Correa
,
B.
Wolfrum
,
M. J.
Schöning
,
A.
Offenhäusser
, and
A.
Yakushenko
, “
Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices
,”
Lab Chip
16
(
1
),
70
74
(
2016
).
34.
H.
Inan
,
J. L.
Kingsley
,
M. O.
Ozen
,
H. C.
Tekin
,
C. R.
Hoerner
,
Y.
Imae
,
T. J.
Metzner
,
J. S.
Preiss
,
N. G.
Durmus
, and
M.
Ozsoz
, “
Monitoring neutropenia for cancer patients at the point of care
,”
Small Methods
1
(
9
),
1700193
(
2017
).
35.
G. I.
Salentijn
,
P. E.
Oomen
,
M.
Grajewski
, and
E.
Verpoorte
, “
Fused deposition modeling 3D printing for (bio) analytical device fabrication: Procedures, materials, and applications
,”
Anal. Chem.
89
(
13
),
7053
7061
(
2017
).
36.
A. C.
Eischeid
and
K. G.
Linden
, “
Molecular indications of protein damage in adenoviruses after UV disinfection
,”
Appl. Environ. Microbiol.
77
(
3
),
1145
1147
(
2011
).
37.
Y. M.
Shirshov
,
A.
Majstrenko
,
P.
Smertenko
, and
E.
Surovtseva
, “
Direct observation of UV-B radiation effect on antigen–antibody coupling using surface plasmon resonance
,”
Sens. Actuators B
105
(
2
),
290
294
(
2005
).

Supplementary Material

You do not currently have access to this content.