The cytoskeletal mechanics and cell mechanical properties play an important role in cellular behaviors. In this study, in order to provide comprehensive insights into the relationship between different cytoskeletal components and cellular elastic moduli, we built a phase-modulated surface acoustic wave microfluidic device to measure cellular compressibility and a microfluidic micropipette-aspiration device to measure cellular Young's modulus. The microfluidic devices were validated based on experimental data and computational simulations. The contributions of structural cytoskeletal actin filament and microtubule to cellular compressibility and Young's modulus were examined in MCF-7 cells. The compressibility of MCF-7 cells was increased after microtubule disruption, whereas actin disruption had no effect. In contrast, Young's modulus of MCF-7 cells was reduced after actin disruption but unaffected by microtubule disruption. The actin filaments and microtubules were stained to confirm the structural alteration in cytoskeleton. Our findings suggest the dissimilarity in the structural roles of actin filaments and microtubules in terms of cellular compressibility and Young's modulus. Based on the differences in location and structure, actin filaments mainly contribute to tensile Young's modulus and microtubules mainly contribute to compressibility. In addition, different responses to cytoskeletal alterations between acoustophoresis and micropipette aspiration demonstrated that micropipette aspiration was better at detecting the change from actin cortex, while the response to acoustophoresis was governed by microtubule networks.

1.
R.
Krishnan
,
J. A.
Park
,
C. Y.
Seow
,
P. V. S.
Lee
, and
A. G.
Stewart
,
Trends Pharmacol. Sci.
37
,
87
(
2016
).
2.
C. T.
Lim
,
E. H.
Zhou
, and
S. T.
Quek
,
J. Biomech.
39
,
195
(
2006
).
3.
C. R.
Ethier
and
C. A.
Simmons
,
Introductory Biomechanics From Cells to Organisms
(Cambridge University Press, New York,
2007
).
4.
D. E.
Ingber
,
J. Cell Sci.
104
(
Pt. 3
),
613
(
1993
).
5.
D. E.
Ingber
,
J. Cell Sci.
116
,
1157
(
2003
).
6.
Y.
Nematbakhsh
and
C. T.
Lim
,
Acta Mech. Sin./Lixue Xuebao
31
,
268
(
2015
).
7.
G. Y. H.
Lee
and
C. T.
Lim
,
Trends Biotechnol.
25
,
111
(
2007
).
8.
C. T.
LIM
,
J. Biomech. Sci. Eng.
1
,
82
(
2006
).
9.
M. G.
Millholland
,
R.
Chandramohanadas
,
A.
Pizzarro
,
A.
Wehr
,
H.
Shi
,
C.
Darling
,
C. T.
Lim
, and
D. C.
Greenbaum
,
Mol. Cell. Proteomics
10
,
M111.010678
(
2011
).
10.
J.
Guck
,
S.
Schinkinger
,
B.
Lincoln
,
F.
Wottawah
,
S.
Ebert
,
M.
Romeyke
,
D.
Lenz
,
H. M.
Erickson
,
R.
Ananthakrishnan
,
D.
Mitchell
,
J.
Kas
,
S.
Ulvick
, and
C.
Bilby
,
Biophys. J.
88
,
3689
(
2005
).
11.
H.-S.
Moon
,
K.
Kwon
,
S.-I.
Kim
,
H.
Han
,
J.
Sohn
,
S.
Lee
, and
H.-I.
Jung
,
Lab Chip
11
,
1118
(
2011
).
12.
H. W.
Hou
,
Q. S.
Li
,
G. Y. H.
Lee
,
A. P.
Kumar
,
C. N.
Ong
, and
C. T.
Lim
,
Biomed. Microdevices
11
,
557
(
2009
).
13.
N.
Nijenhuis
,
X.
Zhao
,
A.
Carisey
,
C.
Ballestrem
, and
B.
Derby
,
Biophys. J.
107
,
1502
(
2014
).
14.
G.
Binnig
and
C. F.
Quate
,
Phys. Rev. Lett.
56
,
930
(
1986
).
15.
J.
Alcaraz
,
L.
Buscemi
,
M.
Grabulosa
,
X.
Trepat
,
B.
Fabry
,
R.
Farré
, and
D.
Navajas
,
Biophys. J.
84
,
2071
(
2003
).
16.
H.
Kubitschke
,
J.
Schnauss
,
K. D.
Nnetu
,
E.
Warmt
,
R.
Stange
, and
J.
Kaes
,
New J. Phys.
19
,
093003
(
2017
).
17.
M.
Puig-De-Morales
,
M.
Grabulosa
,
J.
Alcaraz
,
J.
Mullol
,
G. N.
Maksym
,
J. J.
Fredberg
, and
D.
Navajas
,
J. Appl. Physiol.
91
,
1152
(
2001
).
18.
A.
Di Cerbo
,
V.
Rubino
,
F.
Morelli
,
G.
Ruggiero
,
R.
Landi
,
G.
Guidetti
,
S.
Canello
,
G.
Terrazzano
, and
A.
Alessandrini
,
Sci. Rep.
8
,
1219
(
2018
).
19.
M.
Schuliga
,
A.
Javeed
,
T.
Harris
,
Y.
Xia
,
C.
Qin
,
Z.
Wang
,
X.
Zhang
,
P. V. S.
Lee
,
B.
Camoretti-Mercado
, and
A. G.
Stewart
,
Am. J. Respir. Cell Mol. Biol.
48
,
346
(
2013
).
20.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
,
Biomicrofluidics
8
,
034109
(
2014
).
21.
F. B.
Wijaya
,
A. R.
Mohapatra
,
S.
Sepehrirahnama
, and
K. M.
Lim
,
Microfluid. Nanofluid.
20
,
69
(
2016
).
22.
G. T.
Silva
,
L.
Tian
,
A.
Franklin
,
X.
Wang
,
X.
Han
,
S.
Mann
, and
B. W.
Drinkwater
,
Phys. Rev. E
99
,
063002
(
2019
).
23.
K. J.
Van Vliet
,
G.
Bao
, and
S.
Suresh
,
Acta Mater.
51
,
5881
(
2003
).
24.
P. H.
Wu
,
D. R. B.
Aroush
,
A.
Asnacios
,
W. C.
Chen
,
M. E.
Dokukin
,
B. L.
Doss
,
P.
Durand-Smet
,
A.
Ekpenyong
,
J.
Guck
,
N. V.
Guz
,
P. A.
Janmey
,
J. S. H.
Lee
,
N. M.
Moore
,
A.
Ott
,
Y. C.
Poh
,
R.
Ros
,
M.
Sander
,
I.
Sokolov
,
J. R.
Staunton
,
N.
Wang
,
G.
Whyte
, and
D.
Wirtz
,
Nat. Methods
15
,
1
(
2018
).
25.
C.
Rotsch
and
M.
Radmacher
,
Biophys. J.
78
,
520
(
2000
).
26.
E. P.
Dowling
,
W.
Ronan
,
G.
Ofek
,
V. S.
Deshpande
,
R. M.
McMeeking
,
K. A.
Athanasiou
, and
J. P.
McGarry
,
J. R. Soc. Interface
9
,
3469
(
2012
).
27.
W. R.
Trickey
,
T. P.
Vail
, and
F.
Guilak
,
J. Orthop. Res.
22
,
131
(
2004
).
28.
D.
Shin
and
K.
Athanasiou
,
J. Orthop. Res.
17
,
880
(
1999
).
29.
W. R.
Trickey
,
F. P. T.
Baaijens
,
T. A.
Laursen
,
L. G.
Alexopoulos
, and
F.
Guilak
,
J. Biomech.
39
,
78
(
2006
).
30.
G.
Ma
,
E.
Petersen
,
K. W.
Leong
, and
K.
Liao
,
Biomech. Model. Mechanobiol.
11
,
703
(
2012
).
31.
G.
Ofek
,
D. C.
Wiltz
, and
K. A.
Athanasiou
,
Biophys. J.
97
,
1873
(
2009
).
32.
L. A. G.
Lin
,
A. Q.
Liu
,
Y. F.
Yu
,
C.
Zhang
,
C. S.
Lim
,
S. H.
Ng
,
P. H.
Yap
, and
H. J.
Gao
,
Appl. Phys. Lett.
92
,
233901
(
2008
).
33.
Y.
Wu
,
A. G.
Stewart
, and
P. V. S.
Lee
,
Biomicrofluidics
13
,
024107
(
2019
).
34.
K.
Yosioka
and
Y.
Kawasima
,
Acta Acust. Acust.
5
,
167
(
1955
).
35.
S.
MacLean-Fletcher
,
Cell
20
,
329
(
1980
).
36.
K.
Kamath
,
Mol. Cancer Ther.
5
,
2225
(
2006
).
37.
E. C.
Anderson
,
D. F.
Petersen
, and
R. A.
Tobey
,
Biophys. J.
10
,
630
(
1970
).
38.
A. K.
Bryan
,
V. C.
Hecht
,
W.
Shen
,
K.
Payer
,
W. H.
Grover
, and
S. R.
Manalis
,
Lab Chip
14
,
569
(
2014
).
39.
L. M.
Lee
and
A. P.
Liu
,
Lab Chip
15
,
264
(
2015
).
40.
H.
Rouse
,
Elementary Mechanics of Fluids
(
Dover Publications
,
New York
,
1978
).
41.
I.
Papautsky
,
B. K.
Gale
,
S. K.
Mohanty
,
T. A.
Ameel
, and
A. B.
Frazier
,
Microfluidic Devices and Systems II
(
International Society for Optics and Photonics
,
1999
), pp.
147
158
.
42.
D. P.
Theret
,
M. J.
Levesque
,
M.
Sato
,
R. M.
Nerem
, and
L. T.
Wheeler
,
J. Biomech. Eng.
110
,
190
(
1988
).
43.
I.
Argatov
and
G.
Mishuris
,
Proc. R. Soc. A
472
,
20160559
(
2016
).
44.
L. M.
Lee
,
J. W.
Lee
,
D.
Chase
,
D.
Gebrezgiabhier
, and
A. P.
Liu
,
Biomicrofluidics
10
, 054105 (
2016
).
45.
N. H.
Reynolds
,
W.
Ronan
,
E. P.
Dowling
,
P.
Owens
,
R. M.
McMeeking
, and
J. P.
McGarry
,
Biomaterials
35
,
4015
(
2014
).
46.
J.
White
,
S.
Burris
,
D.
Tukey
,
C.
Smith 2nd
, and
C.
Clawson
,
Blood
64
,
210
(
1984
).
47.
M. A.
Tsai
,
R. S.
Frank
, and
R. E.
Waugh
,
Biophys. J.
66
,
2166
(
1994
).
48.
M.
Sato
,
D. P.
Theret
,
L. T.
Wheeler
,
N.
Ohshima
, and
R. M.
Nerem
,
J. Biomech. Eng.
112
,
263
(
1990
).
49.
S.
Chien
and
K. L.
Sung
,
Biophys. J.
46
,
383
(
1984
).
50.
T.
Yang
,
F.
Bragheri
,
G.
Nava
,
I.
Chiodi
,
C.
Mondello
,
R.
Osellame
,
K.
Berg-Sørensen
,
I.
Cristiani
, and
P.
Minzioni
,
Sci. Rep.
6
,
23946
(
2016
).
51.
S.
Ramesan
,
A. R.
Rezk
,
C.
Dekiwadia
,
C.
Cortez-Jugo
, and
L. Y.
Yeo
,
Nanoscale
10
,
13165
(
2018
).
52.
H.
Li
,
J.
Friend
,
L.
Yeo
,
A.
Dasvarma
, and
K.
Traianedes
,
Biomicrofluidics
3
,
034102
(
2009
).
53.
L.
Alhasan
,
A.
Qi
,
A. R.
Rezk
,
L. Y.
Yeo
, and
P. P. Y.
Chan
,
Integr. Biol.
8
,
12
(
2016
).
54.
G.
Salbreux
,
G.
Charras
, and
E.
Paluch
,
Trends Cell Biol.
22
,
536
(
2012
).
55.
M. P.
Gavilan
,
P.
Gandolfo
,
F. R.
Balestra
,
F.
Arias
,
M.
Bornens
, and
R. M.
Rios
,
EMBO Rep.
19
, e45942 (
2018
).
56.
M. S.
Raafat
, “
Wave propagation in tensegrity and periodic structures
,”
Dissertation
,
University of Maryland
,
2017
.
57.
R. E.
Skelton
,
J. W.
Helton
,
R.
Adhikari
,
J.-P.
Pinaud
, and
W.
Chan
, in
The Mechanical Systems Design Handbook: Modeling, Measurement, and Control
, edited by
O. D. I.
Nwokah
and
Y.
Hurmuzlu
(
CRC Press
,
Boca Raton, FL
,
2002
), pp.
323
396
.

Supplementary Material

You do not currently have access to this content.