In this paper, we report the development of semiquantitative counting-based lateral flow assay (LFA)-type microfluidic paper-based analytical devices (μPADs) to analyze samples at submicroliter volumes. The ability to use submicroliter sample volumes is a significant advantage for μPADs since it enables enhanced multiplexing, reduces cost, and increases user-friendliness since small sample volumes can be collected using methods that do not require trained personnel, such as finger pricking and microneedles. The challenge of accomplishing a semiquantitative test readout using submicroliter sample volumes was overcome with a counting-based approach. In order to use submicroliter sample volumes, we developed a flow strategy with a running liquid to facilitate flow through the assay. The efficacy of the devices was confirmed with glucose and total human immunoglobulin E (IgE) tests using 0.5 μl and 1 μl of sample solutions, respectively. Semiquantitative results were generated to predict glucose concentrations in the range of 0–12 mmol/l and IgE concentrations in the range of 0–400 ng/ml. The counting-based approach correlates the number of dots that exhibited a color change to the concentration of the analyte, which provides a more user-friendly method as compared with interpreting the intensity of a color change. The devices reported herein are the first counting-based LFA-type μPADs capable of semiquantitative testing using submicroliter sample volumes.

1.
A. K.
Yetisen
,
M. S.
Akram
, and
C. R.
Lowe
,
Lab Chip
13
,
2210
(
2013
).
2.
C.
Parolo
and
A.
Merkoçi
,
Chem. Soc. Rev.
42
,
450
(
2013
).
3.
E. W.
Nery
and
L. T.
Kubota
,
Anal. Bioanal. Chem.
405
,
7573
(
2013
).
4.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
, and
E.
Carrilho
,
Anal. Chem.
82
,
3
(
2009
).
5.
X.
Li
and
X.
Liu
,
Adv. Healthcare Mater.
5
,
1326
(
2016
).
6.
L.
Li
,
X.
Huang
,
W.
Liu
, and
W.
Shen
,
ACS Appl. Mater. Interfaces
6
,
21624
(
2014
).
7.
J.
Hu
,
S.
Wang
,
L.
Wang
,
F.
Li
,
B.
Pingguan-Murphy
,
T. J.
Lu
, and
F.
Xu
,
Biosens. Bioelectron.
54
,
585
(
2014
).
8.
F.
Figueredo
,
P. T.
Garcia
,
E.
Corton
, and
W. K. T.
Coltro
,
ACS Appl. Mater. Interfaces
8
,
11
(
2016
).
9.
C.
Zhao
and
X.
Liu
,
Biomicrofluidics
10
,
024119
(
2016
).
10.
E.
Lepowsky
,
F.
Ghaderinezhad
,
S.
Knowlton
, and
S.
Tasoglu
,
Biomicrofluidics
11
,
051501
(
2017
).
11.
H.
Li
,
D.
Han
,
G. M.
Pauletti
, and
A. J.
Steckl
,
Biomicrofluidics
12
,
014110
(
2018
).
12.
N. A.
Meredith
,
C.
Quinn
,
D. M.
Cate
,
T. H.
Reilly
,
J.
Volckens
, and
C. S.
Henry
,
Analyst
141
,
1874
(
2016
).
13.
P.
Nath
,
R. K.
Arun
, and
N.
Chanda
,
RSC Adv.
4
,
59558
(
2014
).
14.
S. M. Z.
Hossain
,
C.
Ozimok
,
C.
Sicard
,
S. D.
Aguirre
,
M. M.
Ali
,
Y.
Li
, and
J. D.
Brennan
,
Anal. Bioanal. Chem.
403
,
1567
(
2012
).
15.
L. S. A.
Busa
,
S.
Mohammadi
,
M.
Maeki
,
A.
Ishida
,
H.
Tani
, and
M.
Tokeshi
,
Micromachines
7
,
86
(
2016
).
16.
M. A.
Chowdury
,
N.
Walji
,
M. A.
Mahmud
, and
B. D.
MacDonald
,
Micromachines
8
,
71
(
2017
).
17.
A. W.
Martinez
,
S. T.
Phillips
,
G. M.
Whitesides
, and
E.
Carrilho
,
Anal. Chem.
82
,
3
(
2010
).
18.
B.
Kalish
and
H.
Tsutsui
,
Lab Chip
14
,
4354
(
2014
).
19.
M. M.
Gong
and
D.
Sinton
,
Chem. Rev.
117
,
8447
(
2017
).
20.
K.
Yamada
,
H.
Shibata
,
K.
Suzuki
, and
D.
Citterio
,
Lab Chip
17
,
1206
(
2017
).
21.
B. D.
MacDonald
,
J. Fluid Mech.
852
,
1
(
2018
).
22.
D. M.
Cate
,
S. D.
Noblitt
,
J.
Volckens
, and
C. S.
Henry
,
Lab Chip
15
,
2808
(
2015
).
23.
S. J.
Vella
,
P.
Beattie
,
R.
Cademartiri
,
A.
Laromaine
,
A. W.
Martinez
,
S. T.
Phillips
,
K. A.
Mirica
, and
G. M.
Whitesides
,
Anal. Chem.
84
,
2883
(
2012
).
24.
C. G.
Li
,
C. Y.
Lee
,
K.
Lee
, and
H.
Jung
,
Biomed. Microdevices
15
,
17
(
2013
).
25.
K.
Tsuchiya
,
S.
Jinnin
,
H.
Yamamoto
,
Y.
Uetsuji
, and
E.
Nakamachi
,
Precis. Eng.
34
,
461
(
2010
).
26.
T.
Li
,
A.
Barnett
,
K. L.
Rogers
, and
Y. B.
Gianchandani
,
Lab Chip
9
,
3495
(
2009
).
27.
A.
Kakoti
,
M. F.
Siddiqui
, and
P.
Goswami
,
Biomicrofluidics
9
,
026502
(
2015
).
28.
Md. A.
Mahmud
,
E. J. M.
Blondeel
,
M.
Kaddoura
, and
B. D.
MacDonald
,
Analyst
141
,
6449
(
2016
).
29.
G.-H.
Chen
,
W.-Y.
Chen
,
Y.-C.
Yen
,
C.-W.
Wang
,
H.-T.
Chang
, and
C.-F.
Chen
,
Anal. Chem.
86
,
6843
(
2014
).
30.
L.
Cai
,
C.
Xu
,
S.
Lin
,
J.
Luo
,
M.
Wu
, and
F.
Yang
,
Biomicrofluidics
8
,
056504
(
2014
).
31.
A.
Apilux
,
W.
Siangproh
,
N.
Praphairaksit
, and
O.
Chailapakul
,
Talanta
97
,
388
(
2012
).
32.
A. K.
Ellerbee
,
S. T.
Phillips
,
A. C.
Siegel
,
K. A.
Mirica
,
A. W.
Martinez
,
P.
Striehl
,
N.
Jain
,
M.
Prentiss
, and
G. M.
Whitesides
,
Anal. Chem.
81
,
8447
(
2009
).
33.
C. T.
Gerold
,
E.
Bakker
, and
C. S.
Henry
,
Anal. Chem.
90
,
4894
(
2018
).
34.
Y.
Chen
,
W.
Chu
,
W.
Liu
, and
X.
Guo
,
Sens. Actuators B
260
,
452
(
2018
).
35.
R.
Pratiwi
,
M. P.
Nguyen
,
S.
Ibrahim
,
N.
Yoshioka
,
C. S.
Henry
, and
D. H.
Tjahjono
,
Talanta
174
,
493
(
2017
).
36.
X.
Wei
,
T.
Tian
,
S.
Jia
,
Z.
Zhu
,
Y.
Ma
,
J.
Sun
,
Z.
Lin
, and
C. J.
Yang
,
Anal. Chem.
88
,
2345
(
2016
).
37.
Y.-T.
Chen
and
J.-T.
Yang
,
Biomed. Microdevices
17
,
52
(
2015
).
38.
Y.
Sameenoi
,
P. N.
Nongkai
,
S.
Nouanthavong
,
C. S.
Henry
, and
D.
Nacapricha
,
Analyst
139
,
6580
(
2014
).
39.
G. G.
Lewis
,
M. J.
DiTucci
, and
S. T.
Phillips
,
Angew. Chem.
124
,
12879
(
2012
).
40.
S.-G.
Jeong
,
S.-H.
Lee
,
C.-H.
Choi
,
J.
Kim
, and
C.-S.
Lee
,
Lab Chip
15
,
1188
(
2015
).
41.
H.-Y.
Yin
,
P.-T.
Chu
,
W.-C.
Tsai
, and
H.-W.
Wen
,
Food Chem.
192
,
934
(
2016
).
42.
C.
Fang
,
Z.
Chen
,
L.
Li
, and
J.
Xia
,
J. Pharm. Biomed. Anal.
56
,
1035
(
2011
).
43.
K.-K.
Fung
,
C. P.-Y.
Chan
, and
R.
Renneberg
,
Anal. Chim. Acta
634
,
89
(
2009
).
44.
K.-K.
Fung
,
C. P.-Y.
Chan
, and
R.
Renneberg
,
Anal. Bioanal. Chem.
393
,
1281
(
2009
).
45.
W.
Leung
,
C. P.
Chan
,
T. H.
Rainer
,
M.
Ip
,
G. W. H.
Cautherley
, and
R.
Renneberg
,
J. Immunol. Methods
336
,
30
(
2008
).
46.
J. H.
Cho
and
S. H.
Paek
,
Biotechnol. Bioeng.
75
,
725
(
2001
).
47.
S. C.
Lou
,
C.
Patel
,
S.
Ching
, and
J.
Gordon
,
Clin. Chem.
39
,
619
(
1993
).
48.
S.
Karita
and
T.
Kaneta
,
Anal. Chem.
86
,
12108
(
2014
).
49.
C. K.
Camplisson
,
K. M.
Schilling
,
W. L.
Pedrotti
,
H. A.
Stone
, and
A. W.
Martinez
,
Lab Chip
15
,
4461
(
2015
).
50.
S.
Karita
and
T.
Kaneta
,
Anal. Chim. Acta
924
,
60
(
2016
).
51.
K.
Tenda
,
R.
Ota
,
K.
Yamada
,
T.
Henares
,
K.
Suzuki
, and
D.
Citterio
,
Micromachines
7
,
80
(
2016
).
52.
S.
Oyola-Reynoso
,
C.
Frankiewicz
,
B.
Chang
,
J.
Chen
,
J.-F.
Bloch
, and
M. M.
Thuo
,
Biomicrofluidics
11
,
014104
(
2017
).
53.
E. B.
Strong
,
S. A.
Schultz
,
A. W.
Martinez
, and
N. W.
Martinez
,
Sci. Rep.
9
,
7
(
2019
).
54.
S. R.
du Roscoat
,
M.
Decain
,
X.
Thibault
,
C.
Geindreau
, and
J.-F.
Bloch
,
Acta Mater.
55
,
2841
(
2007
).
55.
M.
Reyssat
,
L.
Courbin
,
E.
Reyssat
, and
H. A.
Stone
,
J. Fluid Mech.
615
,
335
(
2008
).
56.
American Diabetes Association
,
Diabetes Care
27
(
Suppl. 1
),
S11
(
2004
).
57.
O.
Zetterstöm
and
S. G. O.
Johansson
,
Allergy
36
,
537
(
1981
).
58.
A.
Nieters
,
A.
Łuczyńska
,
S.
Becker
,
N.
Becker
,
R.
Vermeulen
,
K.
Overvad
,
K.
Aleksandrova
,
H.
Boeing
,
P.
Lagiou
,
D.
Trichopoulos
,
A.
Trichopoulou
,
V.
Krogh
,
G.
Masala
,
S.
Panico
,
R.
Tumino
,
C.
Sacerdote
,
B.
Bueno-de-Mesquita
,
S. M.
Jeurnink
,
E.
Weiderpass
,
E.
Ardanaz
,
M. D.
Chirlaque
,
M. J.
Sánchez
,
S.
Sánchez
,
S.
Borgquist
,
S.
Butt
,
B.
Melin
,
F.
Späth
,
S.
Rinaldi
,
P.
Brennan
,
R. S.
Kelly
,
E.
Riboli
,
P.
Vineis
, and
R.
Kaaks
,
Carcinogenesis
35
,
2716
(
2014
).
59.
S. H.
Olson
,
M.
Hsu
,
J. L.
Wiemels
,
P. M.
Bracci
,
M.
Zhou
,
J.
Patoka
,
W. R.
Reisacher
,
J.
Wang
,
R. C.
Kurtz
,
D. T.
Silverman
, and
R. Z.
Stolzenberg-Solomon
,
Cancer Epidemiol. Biomarkers Prev.
23
,
1414
(
2014
).
You do not currently have access to this content.