Assays for chemical biomarkers are a vital component in the ecosystem of noninvasive disease state assessment, many of which rely on quantification by colorimetric reactions or spectrophotometry. While modern advances in microfluidic technology have enabled such classes of devices to be employed in medical applications, the challenge has persisted in adapting the necessary tooling and equipment to integrate spectrophotometry into a microfluidic workflow. Spectrophotometric measurements are common in biomarker assays because of straightforward acquisition, ease of developing the assay's mechanism of action, and ease of tuning sensitivity. In this work, 3D-printed, discrete microfluidic elements are leveraged to develop a model system for assaying hyaluronidase, a urinary biomarker of bladder cancer, via absorbance spectrometry of gold nanoparticle aggregation. Compared to laboratory microtiter plate-based techniques, the system demonstrates equivalent performance while remaining competitive in terms of resource and operation requirements and cost.

1.
J. S.
Kuo
and
D. T.
Chiu
,
Lab Chip
11
,
2656
(
2011
).
2.
M. J.
Wheeler
,
Ann. Clin. Biochem.
44
,
209
(
2007
).
3.
K. C.
Bhargava
,
B.
Thompson
, and
N.
Malmstadt
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
15013
(
2014
).
4.
K. C.
Bhargava
,
B.
Thompson
, and
D.
Iqbal
, and
N.
Malmstadt
,
Sci. Rep.
5
,
15609
(
2015
).
5.
K. C.
Bhargava
,
B.
Thompson
,
A.
Tembhekar
, and
N.
Malmstadt
,
Micromachines
7
,
11
(
2016
).
6.
B.
Thompson
,
C. T.
Riche
,
N.
Movesian
,
K. C.
Bhargava
,
M.
Gupta
, and
N.
Malmstadt
,
Microfluid. Nanofluid.
20
,
78
(
2016
).
7.
K. C.
Bhargava
,
R.
Ermagan
,
B.
Thompson
,
A.
Friedman
, and
N.
Malmstadt
,
Micromachines
7
,
137
(
2017
).
8.
A.
Gomez-Hens
and
D.
Perez-Bendito
,
Anal. Chem. Acta
242
,
147
(
1991
).
9.
R.
Bleul
,
M.
Ritzi-Lehnert
,
J.
Hoth
,
N.
Scharpfenecker
,
I.
Frese
,
D.
Duchs
,
S.
Brunklaus
,
T. E.
Hansen-Hagge
,
F. J.
Meyer-Almes
, and
K. S.
Drese
,
Anal. Bioanal. Chem.
399
,
1117
(
2011
).
10.
H.
Song
and
R. F.
Ismagilov
,
J. Am. Chem. Soc.
125
,
14613
(
2003
).
11.
V.
Srinivasa
,
V. K.
Pamula
, and
R. B.
Fair
,
Anal. Chim. Acta
507
,
145
(
2004
).
12.
L.
Jiang
and
S.
Pau
,
Appl. Phys. Lett.
90
,
111108
(
2007
).
13.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discov.
5
,
210
(
2006
).
14.
L. J.
Esserman
,
I. M.
Thompson
, and
B.
Reld
,
J. Am. Med. Assoc.
310
,
797
(
2013
).
15.
S.
Ramakumar
,
J.
Bhuiyan
,
J. A.
Besse
,
S. G.
Roberts
,
P. C.
Wollian
,
M. L.
Blute
, and
D. J.
O’Kane
,
J. Urol.
161
,
388
(
1999
).
16.
H.
Barton Grossman
,
M.
Soloway
,
E.
Messing
,
G.
Katz
,
B.
Stein
,
V.
Kassabian
, and
Y.
Shen
,
J. Am. Med. Assoc.
295
,
299
(
2006
).
17.
M. F.
Botteman
,
C. L.
Pashos
,
A.
Redaelli
,
B.
Laskin
, and
R.
Hauser
,
Pharmacoeconomics
21
,
1315
(
2003
).
18.
A. A. G.
Van Tilborg
,
C. H.
Bangma
, and
E.
Zwarthoff
,
Int. J. Urol.
16
,
23
(
2009
).
19.
V. B.
Lokeshwar
,
D.
Rubinowicz
,
G. L.
Schroeder
,
E.
Rorgacs
,
J. D.
Minna
,
N. L.
Block
,
M.
Nadji
, and
B. L.
Lokeshwar
,
J. Biol. Chem.
276
,
11922
(
2001
).
20.
P.
Auivinen
,
R.
Tammi
,
J.
Parkkinen
,
M.
Tammi
,
U.
Agren
,
R.
Johansson
,
P.
Hirikoski
,
M.
Eskelinen
, and
V. M.
Kosma
,
Am. J. Pathol.
156
,
529
(
2000
).
21.
V. B.
Lokeshwar
,
C.
Obek
,
M. S.
Soloway
, and
N. L.
Block
,
Cancer Res.
58
,
773
(
1998
).
22.
H. T.
Pham
,
N. L.
Block
, and
V. B.
Lokeshwar
,
Cancer Res.
57
,
778
(
1997
).
23.
J. W.
Kim
,
J. H.
Kim
,
S. J.
Chung
, and
B. H.
Chung
,
Analyst
134
,
1291
(
2009
).
24.
A. I.
Nossier
,
S.
Eissa
,
M. F.
Ismail
,
M. A.
Hamdy
, and
H. M. E.
Azzazy
,
Biosens. Bioelectron.
54
,
7
(
2014
).
25.
K.
Pandya
,
C. A.
Ray
,
L.
Brunner
,
J.
Wang
,
J. W.
Lee
, and
B.
DeSilva
,
J. Pharm. Biomed. Anal.
53
,
623
(
2010
).
26.
A. K.
Au
,
W.
Lee
, and
A.
Folch
,
Lab on a Chip
14
,
1294
(
2014
).

Supplementary Material

You do not currently have access to this content.