The cell-free layer thickness of an aggregating red blood cell (RBC) suspension in a rectangular microchannel is investigated by hybrid fluid-particle numerical modeling. Several factors affect the suspension viscosity, cell-free layer thickness, and the cell aggregate distribution. These include the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the effect of the shear rate on the cell-free layer thickness is controversial. We found that the suspension viscosity increases along with a decrease in the cell-free layer thickness as the shear rate increases for aggregating model RBCs at low shear rates. At moderate to high shear rates, the cell-free layer thickness increases with the increasing shear rate from medium to strong shear flow for both 10% and 20% red blood cell suspensions.

1.
S.
Chien
,
S.
Usami
,
R. J.
Dellenback
, and
M. I.
Gregersen
,
Am. J. Physiol.
219
(
1
),
143
153
(
1970
).
2.
O.
Baskurt
,
B.
Neu
, and
H. J.
Meiselman
,
Red Blood Cell Aggregation
(
CRC Press
,
Boca Raton
,
FL
,
2011
).
3.
E. W.
Merrill
,
E. R.
Gilliland
,
T. S.
Lee
, and
E. W.
Salzman
,
Circ. Res.
18
(
4
),
437
446
(
1966
).
4.
M.
Brust
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P. E.
Arratia
 et al,
Phys. Rev. Lett.
110
(
7
),
078305
(
2013
).
5.
L.
Lanotte
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J. M.
Fromental
,
V.
Claveria
 et al,
Proc. Natl. Acad. Sci. U.S.A.
113
(
47
),
13289
13294
(
2016
).
6.
T. W.
Secomb
,
Annu. Rev. Fluid Mech.
49
(
1
),
443
461
(
2017
).
7.
Y.-L.
Chen
,
RSC Adv.
4
(
34
),
17908
17916
(
2014
).
8.
C.-W.
Hsu
and
Y.-L.
Chen
,
J. Chem. Phys.
133
(
3
),
034906
(
2010
).
9.
H. L.
Goldsmith
,
G. R.
Cokelet
, and
P.
Gaehtgens
,
Am. J. Physiol.
257
(
3 Pt 2
),
H1005
H1015
(
1989
).
10.
R.
Fåhræus
and
T.
Lindqvist
,
Am. J. Physiol.
96
(
3
),
562
568
(
1931
).
11.
A. R.
Pries
,
D.
Neuhaus
, and
P.
Gaehtgens
,
Am. J. Physiol.
263
(
6 Pt 2
),
H1770
H1778
(
1992
).
12.
D. A.
Fedosov
,
B.
Caswell
,
A. S.
Popel
, and
G. E.
Karniadakis
,
Microcirculation
17
(
8
),
615
628
(
2010
).
13.
B.
Namgung
,
L. H.
Liang
, and
S.
Kim
, in
Visualization and Simulation of Complex Flows in Biomedical Engineering
(
Springer
,
Dordrecht
,
2014
), pp.
75
87
.
14.
A. S.
Popel
and
P. C.
Johnson
,
Annu. Rev. Fluid Mech.
37
,
43
69
(
2005
).
15.
D. A.
Fedosov
and
G.
Gompper
,
Soft Matter
10
(
17
),
2961
2970
(
2014
).
16.
H.
Zhao
,
E. S. G.
Shaqfeh
, and
V.
Narsimhan
,
Phys. Fluids
24
(
1
),
011902
(
2012
).
17.
S.
Kim
,
P. K.
Ong
,
O.
Yalcin
,
M.
Intaglietta
, and
P. C.
Johnson
,
Biorheology
46
(
3
),
181
189
(
2009
).
18.
W. S.
Mielczarek
,
E. A.
Obaje
,
T. T.
Bachmann
, and
M.
Kersaudy-Kerhoas
,
Lab Chip
16
(
18
),
3441
3448
(
2016
).
19.
P. K.
Ong
,
B.
Namgung
,
P. C.
Johnson
, and
S.
Kim
,
Am. J. Physiol.
298
(
6
),
H1870
H1878
(
2010
).
20.
S.
Kim
,
R. L.
Kong
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
,
Am. J. Physiol.
293
(
3
),
H1526
H1535
(
2007
).
21.
N.
Maeda
,
Y.
Suzuki
,
J.
Tanaka
, and
N.
Tateishi
,
Am. J. Physiol. Heart Circ. Physiol.
271
(
6 Pt 2
),
H2454
H2461
(
1996
).
22.
S.
Novais
,
D.
Pinho
,
D.
Bento
,
E.
Pinto
,
T.
Yaginuma
,
C. S.
Fernandes
 et al, in
Visualization and Simulation of Complex Flows in Biomedical Engineering
(
Springer
,
Dordrecht
,
2014
), pp.
119
132
.
23.
D.
Katanov
,
G.
Gompper
, and
D. A.
Fedosov
,
Microvasc. Res.
99
,
57
66
(
2015
).
24.
P.
Balogh
and
P.
Bagchi
,
J. Fluid Mech.
864
,
768
806
(
2019
).
25.
J.
Zhang
,
P. C.
Johnson
, and
A. S.
Popel
,
Microvasc. Res.
77
(
3
),
265
272
(
2009
).
26.
M.
Sharan
and
A. S.
Popel
,
Biorheology
38
(
5–6
),
415
428
(
2001
).
27.
V.
Vand
,
J. Phys. Colloid Chem.
52
(
2
),
277
299
(
1948
).
28.
C.-T.
Liao
,
Y.-F.
Wu
,
W.
Chien
,
J.-R.
Huang
, and
Y.-L.
Chen
,
J. Phys. Condens. Matter
29
(
43
),
435101
(
2017
).
29.
J.
Tan
,
T.
Sinno
, and
S. L.
Diamond
,
J. Comput. Sci.
25
,
89
100
(
2018
).
30.
G.
Zavodszky
,
B.
van Rooij
,
V.
Azizi
, and
A.
Hoekstra
,
Front. Physiol.
8
,
563
(
2017
).
31.
D. A.
Fedosov
,
W.
Pan
,
B.
Caswell
,
G.
Gompper
, and
G. E.
Karniadakis
,
Proc. Natl. Acad. Sci. U.S.A.
108
(
29
),
11772
11777
(
2011
).
32.
W.
Reinke
,
P.
Gaehtgens
, and
P. C.
Johnson
,
Am. J. Physiol. Heart Circ. Physiol.
253
(
3 Pt 2
),
H540
H547
(
1987
).
33.
D.
Sampaio
,
D.
Lopes
, and
V.
Semiao
,
Exp. Therm. Fluid Sci.
68
,
205
215
(
2015
).
34.
M.
Brust
,
O.
Aouane
,
M.
Thiebaud
,
D.
Flormann
,
C.
Verdier
,
L.
Kaestner
 et al,
Sci. Rep.
4
,
4348
(
2014
).
35.
M.
Thiebaud
,
Z.
Shen
,
J.
Harting
, and
C.
Misbah
,
Phys. Rev. Lett.
112
(
23
),
238304
(
2014
).
36.
Y. H.
Qian
,
D.
Dhumieres
, and
P.
Lallemand
,
EPL
17
(
6
),
479
484
(
1992
).
37.
T.
Krüger
,
F.
Varnik
, and
D.
Raabe
,
Comput. Math. Appl.
61
(
12
),
3485
3505
(
2011
).
38.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
,
Comput. Methods Appl. Mech. Eng.
199
(
29–32
),
1937
1948
(
2010
).
39.
C. S.
Peskin
,
Acta Numerica
11
,
479
517
(
2003
).
40.
M.
Dao
,
J.
Li
, and
S.
Suresh
,
Mater. Sci. Eng. C
26
(
8
),
1232
1244
(
2006
).
41.
Y. L.
Liu
,
L.
Zhang
,
X. D.
Wang
, and
W. K.
Liu
,
Int. J. Numer. Methods Fluids
46
(
12
),
1237
1252
(
2004
).
42.
A. R.
Pries
,
A.
Fritzsche
,
K.
Ley
, and
P.
Gaehtgens
,
Circ. Res.
70
(
6
),
1113
1121
(
1992
).
43.
J. L.
McWhirter
,
H.
Noguchi
, and
G.
Gompper
,
Proc. Natl. Acad. Sci. U.S.A.
106
(
15
),
6039
6043
(
2009
).
You do not currently have access to this content.