Understanding cell transport and adhesion dynamics under flow is important for many biotransport problems. We investigated the influence of cell size, ligand coating density, micropost size, and intercellular collisions on circulating tumor cell adhesion and transport in microfluidic devices. The cells were modeled as coarse-grained cell membranes and the adhesion was modeled as pairwise interacting potentials, while the fluid was solved using the lattice Boltzmann method. The coupling between the cell and the fluid was achieved through the immersed boundary method. The cell showed transient rolling adhesion in high shear regions and firm adhesion in low shear regions. The adhesive force for rolling cells on a micropost was increasing before the cell reached the crest of the post and then decreasing afterward. The adhesive strength for cells increases with ligand coating density. Cell trajectories in a microfluidic device with a shifted post design were studied as well. At low concentrations, the majority of the cells follow streamlines closely. However, the intercellular collision and collision from red blood cells impacted the cell trajectories. An L2 norm of |e| was defined to characterize the difference between the cell trajectories and the associated streamlines. It was shown that |e|L2 increases with micropost sizes and cell concentrations.

1.
G. P.
Gupta
and
J.
Massagué
, “
Cancer metastasis: Building a framework
,”
Cell
127
(
4
),
679
695
(
2006
).
2.
D.
Wirtz
,
K.
Konstantopoulos
, and
P. C.
Searson
, “
The physics of cancer: The role of physical interactions and mechanical forces in metastasis
,”
Nat. Rev. Cancer
11
(
7
),
512
522
(
2011
).
3.
C. L.
Chaffer
and
R. A.
Weinberg
, “
A perspective on cancer cell metastasis
,”
Science
331
(
6024
),
1559
1564
(
2011
).
4.
W.
Shi
,
S.
Wang
,
A.
Maarouf
,
C. G.
Uhl
,
R.
He
,
D.
Yunus
, and
Y.
Liu
, “
Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices
,”
Lab Chip
17
(
19
),
3291
3299
(
2017
).
5.
P.
Chen
,
Y.-Y.
Huang
,
K.
Hoshino
, and
J. X. J.
Zhang
, “
Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells
,”
Sci. Rep.
5
,
8745
(
2015
).
6.
K.
Hoshino
,
Y.-Y.
Huang
,
N.
Lane
,
M.
Huebschman
,
J. W.
Uhr
,
E. P.
Frenkel
, and
X.
Zhang
, “
Microchip-based immunomagnetic detection of circulating tumor cells
,”
Lab Chip
11
(
20
),
3449
3457
(
2011
).
7.
M.
Sun
,
J.
Xu
,
J. G.
Shamul
,
X.
Lu
,
S.
Husain
, and
X.
He
, “
Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection
,”
Biomaterials
197
,
161
170
(
2019
).
8.
P. R. C.
Gascoyne
,
J.
Noshari
,
T. J.
Anderson
, and
F. F.
Becker
, “
Isolation of rare cells from cell mixtures by dielectrophoresis
,”
Electrophoresis
30
(
8
),
1388
1398
(
2009
).
9.
M. M.
Wang
,
E.
Tu
,
D. E.
Raymond
,
J. M.
Yang
,
H.
Zhang
,
N.
Hagen
,
B.
Dees
,
E. M.
Mercer
,
A. H.
Forster
,
I.
Kariv
et al., “
Microfluidic sorting of mammalian cells by optical force switching
,”
Nat. Biotechnol.
23
(
1
),
83
87
(
2005
).
10.
T.-K.
Chiu
,
A.-C.
Chao
,
W.-P.
Chou
,
C.-J.
Liao
,
H.-M.
Wang
,
J.-H.
Chang
,
P.-H.
Chen
, and
M.-H.
Wu
, “
Optically-induced-dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (CTC) clusters based on their size characteristics
,”
Sens. Actuators B Chem.
258
,
1161
1173
(
2018
).
11.
J.
Shi
,
H.
Huang
,
Z.
Stratton
,
Y.
Huang
, and
T. J.
Huang
, “
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)
,”
Lab Chip
9
(
23
),
3354
3359
(
2009
).
12.
P.
Li
,
Z.
Mao
,
Z.
Peng
,
L.
Zhou
,
Y.
Chen
,
P.-H.
Huang
,
C. I.
Truica
,
J. J.
Drabick
,
W. S.
El-Deiry
,
M.
Dao
et al., “
Acoustic separation of circulating tumor cells
,”
Proc. Natl. Acad. Sci. U.S.A.
112
(
16
),
4970
4975
(
2015
).
13.
J. P.
Gleghorn
,
E. D.
Pratt
,
D.
Denning
,
H.
Liu
,
N. H.
Bander
,
S. T.
Tagawa
,
D. M.
Nanus
,
P. A.
Giannakakou
, and
B. J.
Kirby
, “
Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody
,”
Lab Chip
10
(
1
),
27
29
(
2010
).
14.
Y.
Wan
,
Y.
Liu
,
P. B.
Allen
,
W.
Asghar
,
M. A.
Iftakher Mahmood
,
J.
Tan
,
H.
Duhon
,
Y.-T.
Kim
,
A. D.
Ellington
, and
S. M.
Iqbal
, “
Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array
,”
Lab Chip
12
(
22
),
4693
4701
(
2012
).
15.
Y.
Wan
,
J.
Tan
,
W.
Asghar
,
Y.-T.
Kim
,
Y.
Liu
, and
S. M.
Iqbal
, “
Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices
,”
J. Phys. Chem. B
115
(
47
),
13891
13896
(
2011
).
16.
P.
Preira
,
V.
Grandne
,
J.-M.
Forel
,
S.
Gabriele
,
M.
Camara
, and
O.
Theodoly
, “
Passive circulating cell sorting by deformability using a microfluidic gradual filter
,”
Lab Chip
13
(
1
),
161
170
(
2013
).
17.
A. F.
Sarioglu
,
N.
Aceto
,
N.
Kojic
,
M. C.
Donaldson
,
M.
Zeinali
,
B.
Hamza
,
A.
Engstrom
,
H.
Zhu
,
T. K.
Sundaresan
,
D. T.
Miyamoto
et al., “
A microfluidic device for label-free, physical capture of circulating tumor cell clusters
,”
Nat. Methods
12
(
7
),
685
691
(
2015
).
18.
D.
Yu
,
L.
Tang
,
Z.
Dong
,
K. A.
Loftis
,
Z.
Ding
,
J.
Cheng
,
B.
Qin
,
J.
Yan
, and
W.
Li
, “
Effective reduction of non-specific binding of blood cells in a microfluidic chip for isolation of rare cancer cells
,”
Biomater. Sci.
6
(
11
),
2871
2880
(
2018
).
19.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D. D.
Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
(
8
),
3249
3267
(
2010
).
20.
H.
Ito
,
N.
Yamaguchi
,
M.
Onimaru
,
S.
Kimura
,
T.
Ohmori
,
F.
Ishikawa
,
J.
Sato
,
S.
Ito
, and
H.
Inoue
, “
Change in number and size of circulating tumor cells with high telomerase activity during treatment of patients with gastric cancer
,”
Oncol. Lett.
12
(
6
),
4720
4726
(
2016
).
21.
C. L.
Roland
,
A. H.
Harken
,
M. G.
Sarr
, and
C. C.
Barnett, Jr.
, “
ICAM-1 expression determines malignant potential of cancer
,”
Surgery
141
(
6
),
705
707
(
2007
).
22.
I.
Chung
,
M.
Reichelt
,
L.
Shao
,
R. W.
Akita
,
H.
Koeppen
,
L.
Rangell
,
G.
Schaefer
,
I.
Mellman
, and
M. X.
Sliwkowski
, “
High cell-surface density of HER2 deforms cell membranes
,”
Nat. Commun.
7
,
12742
(
2016
).
23.
I.
Baccelli
,
A.
Schneeweiss
,
S.
Riethdorf
,
A.
Stenzinger
,
A.
Schillert
,
V.
Vogel
,
C.
Klein
,
M.
Saini
,
T.
Bäuerle
,
M.
Wallwiener
et al., “
Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay
,”
Nat. Biotechnol.
31
(
6
),
539
(
2013
).
24.
R. M.
Mohamadi
,
J. D.
Besant
,
A.
Mepham
,
B.
Green
,
L.
Mahmoudian
,
T.
Gibbs
,
I.
Ivanov
,
A.
Malvea
,
J.
Stojcic
,
A. L.
Allan
et al., “
Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations
,”
Angew. Chem. Int. Ed.
54
(
1
),
139
143
(
2015
).
25.
M.
Labib
,
B.
Green
,
R. M.
Mohamadi
,
A.
Mepham
,
S. U.
Ahmed
,
L.
Mahmoudian
,
I.-H.
Chang
,
E. H.
Sargent
, and
S. O.
Kelley
, “
Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations
,”
J. Am. Chem. Soc.
138
(
8
),
2476
2479
(
2016
).
26.
Z.
Ding
,
Y.
Zheng
,
Y.
Xu
,
Y.
Jiao
, and
W.
Li
, “
Hyperuniform flow fields resulting from hyperuniform configurations of circular disks
,”
Phys. Rev. E
98
(
6
),
063101
(
2018
).
27.
J. F.
Wong
,
E. W. K.
Young
, and
C. A.
Simmons
, “
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
,”
AIP Adv.
7
(
11
),
115116
(
2017
).
28.
S.-C.
Kim
,
B. H.
Wunsch
,
H.
Hu
,
J. T.
Smith
,
R. H.
Austin
, and
G.
Stolovitzky
, “
Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays
,”
Proc. Natl Acad. Sci. U.S.A.
114
(
26
),
E5034
E5041
(
2017
).
29.
T.
Krüger
,
D.
Holmes
, and
P. V.
Coveney
, “
Deformability-based red blood cell separation in deterministic lateral displacement devices—A simulation study
,”
Biomicrofluidics
8
(
5
),
054114
(
2014
).
30.
L.
Zhu
,
C.
Rorai
,
D.
Mitra
, and
L.
Brandt
, “
A microfluidic device to sort capsules by deformability: A numerical study
,”
Soft Matter
10
(
39
),
7705
7711
(
2014
).
31.
I.
Cimrák
, “
Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension
,”
Comput. Methods Biomech. Biomed. Eng.
19
(
14
),
1525
1530
(
2016
).
32.
M.
Bušík
,
I.
Jančigová
,
R.
Tóthová
, and
I.
Cimrák
, “
Simulation study of rare cell trajectories and capture rate in periodic obstacle arrays
,”
J. Comput. Sci.
17
,
370
376
(
2016
).
33.
D. K.
Singh
,
C. C.
Ahrens
,
W.
Li
, and
S. A.
Vanapalli
, “
Label-free, high-throughput holographic screening and enumeration of tumor cells in blood
,”
Lab Chip
17
(
17
),
2920
2932
(
2017
).
34.
J.
Tan
,
T. R.
Sinno
, and
S. L.
Diamond
, “
A parallel fluid–solid coupling model using LAMMPS and Palabos based on the immersed boundary method
,”
J. Comput. Sci.
25
,
89
100
(
2018
).
35.
L.
Peng
,
K.-I.
Nomura
,
T.
Oyakawa
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
, “Parallel lattice Boltzmann flow simulation on emerging multi-core platforms,” in European Conference on Parallel Processing (Springer, 2008), pp. 763–777.
36.
J. R.
Clausen
,
D. A.
Reasor
, and
C. K.
Aidun
, “
Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM blue gene/P architecture
,”
Comput. Phys. Commun.
181
(
6
),
1013
1020
(
2010
).
37.
E. S.
Boek
and
M.
Venturoli
, “
Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries
,”
Comput. Math. Appl.
59
(
7
),
2305
2314
(
2010
).
38.
M. A. A.
Spaid
and
F. R.
Phelan, Jr.
, “
Lattice Boltzmann methods for modeling microscale flow in fibrous porous media
,”
Phys. Fluids
9
(
9
),
2468
2474
(
1997
).
39.
X.
Yu
,
J.
Tan
, and
S. L.
Diamond
, “
Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions
,”
J. Thromb. Haemost.
16
(
2
),
316
329
(
2018
).
40.
R.
Voronov
,
S.
Van Gordon
,
V. I.
Sikavitsas
, and
D. V.
Papavassiliou
, “
Computational modeling of flow-induced shear stresses within 3d salt-leached porous scaffolds imaged via micro-CT
,”
J. Biomech.
43
(
7
),
1279
1286
(
2010
).
41.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
(
2
),
642
663
(
1999
).
42.
X.
Shan
and
H.
Chen
, “
Lattice Boltzmann model for simulating flows with multiple phases and components
,”
Phys. Rev. E
47
(
3
),
1815
(
1993
).
43.
Y.
Wang
,
Y. L.
He
,
T. S.
Zhao
,
G. H.
Tang
, and
W. Q.
Tao
, “
Implicit-explicit finite-difference lattice Boltzmann method for compressible flows
,”
Int. J. Mod. Phys. C
18
(
12
),
1961
1983
(
2007
).
44.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
(
4
),
046308
(
2002
).
45.
I. V.
Pivkin
and
G. E.
Karniadakis
, “
Accurate coarse-grained modeling of red blood cells
,”
Phys. Rev. Lett.
101
(
11
),
118105
(
2008
).
46.
D. A.
Reasor
,
J. R.
Clausen
, and
C. K.
Aidun
, “
Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow
,”
Int. J. Numer. Methods Fluids
68
(
6
),
767
781
(
2012
).
47.
M.
Dao
,
J.
Li
, and
S.
Suresh
, “
Molecularly based analysis of deformation of spectrin network and human erythrocyte
,”
Mater. Sci. Eng. C
26
(
8
),
1232
1244
(
2006
).
48.
J.
Tan
,
S.
Sohrabi
,
R.
He
, and
Y.
Liu
, “
Numerical simulation of cell squeezing through a micropore by the immersed boundary method
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
232
(
3
),
502
514
(
2018
).
49.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
, “
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
,”
Biophys. J.
98
(
10
),
2215
2225
(
2010
).
50.
B. E.
Griffith
, “
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions
,”
Int. J. Numer. Methods Biomed. Eng.
28
(
3
),
317
345
(
2012
).
51.
M.-C.
Hsu
and
D.
Kamensky
, “Immersogeometric analysis of bioprosthetic heart valves, using the dynamic augmented Lagrangian method,” in Frontiers in Computational Fluid-Structure Interaction and Flow Simulation (Springer, 2018), pp. 167–212.
52.
D.
Rossinelli
,
Y.-H.
Tang
,
K.
Lykov
,
D.
Alexeev
,
M.
Bernaschi
,
P.
Hadjidoukas
,
M.
Bisson
,
W.
Joubert
,
C.
Conti
,
G.
Karniadakis
et al., “The in-silico lab-on-a-chip: Petascale and high-throughput simulations of microfluidics at cell resolution,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (ACM, 2015), p. 2.
53.
W.
Kou
,
A. P. S.
Bhalla
,
B. E.
Griffith
,
J. E.
Pandolfino
,
P. J.
Kahrilas
, and
N. A.
Patankar
, “
A fully resolved active musculo-mechanical model for esophageal transport
,”
J. Comput. Phys.
298
,
446
465
(
2015
).
54.
Y.
Liu
and
Y.
Mori
, “
Properties of discrete delta functions and local convergence of the immersed boundary method
,”
SIAM J. Numer. Anal.
50
(
6
),
2986
3015
(
2012
).
55.
X.
Yang
,
X.
Zhang
,
Z.
Li
, and
G.-W.
He
, “
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
,”
J. Comput. Phys.
228
(
20
),
7821
7836
(
2009
).
56.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numerica
11
,
479
517
(
2002
).
57.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
58.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
(
2
),
602
628
(
2004
).
59.
M.
de Haan
,
G.
Zavodszky
,
V.
Azizi
, and
A.
Hoekstra
, “
Numerical investigation of the effects of red blood cell cytoplasmic viscosity contrasts on single cell and bulk transport behaviour
,”
Appl. Sci.
8
(
9
),
1616
(
2018
).
60.
S.
Frijters
,
T.
Krüger
, and
J.
Harting
, “
Parallelised Hoshen–Kopelman algorithm for lattice-Boltzmann simulations
,”
Comput. Phys. Commun.
189
,
92
98
(
2015
).
61.
S. K.
Doddi
and
P.
Bagchi
, “
Lateral migration of a capsule in a plane Poiseuille flow in a channel
,”
Int. J. Multiphase Flow
34
(
10
),
966
986
(
2008
).
62.
D. A.
Reasor, Jr.
,
M.
Mehrabadi
,
D. N.
Ku
, and
C. K.
Aidun
, “
Determination of critical parameters in platelet margination
,”
Ann. Biomed. Eng.
41
(
2
),
238
249
(
2013
).
63.
J. B.
Freund
and
M. M.
Orescanin
, “
Cellular flow in a small blood vessel
,”
J. Fluid Mech.
671
,
466
490
(
2011
).
64.
E. C.
Faria
,
N.
Ma
,
E.
Gazi
,
P.
Gardner
,
M.
Brown
,
N. W.
Clarke
, and
R. D.
Snook
, “
Measurement of elastic properties of prostate cancer cells using AFM
,”
Analyst
133
(
11
),
1498
1500
(
2008
).
65.
R.
Skalak
,
A.
Tozeren
,
R. P.
Zarda
, and
S.
Chien
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
(
3
),
245
264
(
1973
).
66.
T.
Omori
,
T.
Ishikawa
,
D.
Barthès-Biesel
,
A.-V.
Salsac
,
J
Walter
,
Y
Imai
, and
T
Yamaguchi
, “
Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow
,”
Phys. Rev. E
83
(
4
),
041918
(
2011
).
67.
L. S.-L.
Cheung
,
X.
Zheng
,
L.
Wang
,
J. C.
Baygents
,
R.
Guzman
,
J. A.
Schroeder
,
R. L.
Heimark
, and
Y.
Zohar
, “
Adhesion dynamics of circulating tumor cells under shear flow in a bio-functionalized microchannel
,”
J. Micromech. Microeng.
21
(
5
),
054033
(
2011
).
68.
X.
Yu
,
J.
Tan
, and
S. L.
Diamond
, “
Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions
,”
J. Thromb. Haemost.
16
(
2
),
316
329
(
2018
).
69.
K.-C.
Chang
,
D. F. J.
Tees
, and
D. A.
Hammer
, “
The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion
,”
Proc. Natl. Acad. Sci. U.S.A.
97
(
21
),
11262
11267
(
2000
).
70.
L.
Li
,
H.
Tang
,
J.
Wang
,
J.
Lin
, and
H.
Yao
, “
Rolling adhesion of cell in shear flow: A theoretical model
,”
J. Mech. Phys. Solids
119
,
369
381
(
2018
).
71.
S. D.
Hudson
, “
Wall migration and shear-induced diffusion of fluid droplets in emulsions
,”
Phys. Fluids
15
(
5
),
1106
1113
(
2003
).
72.
V.
Breedveld
,
D.
Van Den Ende
,
M.
Bosscher
,
R. J. J.
Jongschaap
, and
J.
Mellema
, “
Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions
,”
J. Chem. Phys.
116
(
23
),
10529
10535
(
2002
).
73.
M.
Loewenberg
and
E. J.
Hinch
, “
Collision of two deformable drops in shear flow
,”
J. Fluid. Mech.
338
,
299
315
(
1997
).
74.
P.
Pranay
,
R. G.
Henríquez-Rivera
, and
M. D.
Graham
, “
Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids
,”
Phys. Fluids
24
(
6
),
061902
(
2012
).
75.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
(
7
),
671
(
2012
).

Supplementary Material

You do not currently have access to this content.