Polarization of the ion-selective systems results in the formation of ion-depleted and ion-concentrated zones in the electrolyte layers adjacent to the system. One can employ ion-concentration polarization for the removal of charged large molecules and small ions from the flowing liquid. Removal of large molecules from the flowing solution and their local accumulation is often referred to as preconcentration, removal of small ions as desalination. Here, we study the effect of the channel geometry on the removal of charged species from their water solutions experimentally. Straight, converging, and diverging channels equipped with a pair of heterogeneous cation-exchange membranes are compared in terms of their effect on preconcentration of an observable fluorescein dye and on desalination of water solution of potassium chloride. Our results show that preconcentration of the dye is not significantly affected by the channel geometry. The distance of the preconcentration band from one of the membranes was approximately the same in all tested channel geometries. The major difference was in the location of the band within the channel, when the conical channels localized the band at one of the channel walls. The straight channel showed a slightly broader range of applicable flow rates. The semibatch desalination of 0.01M KCl solution turned out to be more efficient in conical channels, which was associated with a larger volume of the channel available for the accumulation of the concentrated solution. Our results suggest that conical channels can be advantageously used in transforming the ion-concentration-polarization-based semibatch desalination into a fully continuous one.

1.
A.
Holtzel
and
U.
Tallarek
, “
Ionic conductance of nanopores in microscale analysis systems: Where microfluldics meets nanofluidics
,”
J. Sep. Sci.
30
(
10
),
1398
1419
(
2007
).
2.
A. S.
Khair
and
T. M.
Squires
, “
Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport [Phys. Fluids 20, 087102 (2008)]
,”
Phys. Fluids
20
(
12
),
129901
(
2008
).
3.
J. J.
Krol
,
M.
Wessling
, and
H.
Strathmann
, “
Concentration polarization with monopolar ion exchange membranes: Current-voltage curves and water dissociation
,”
J. Membr. Sci.
162
(
1-2
),
145
154
(
1999
).
4.
Y. C.
Wang
,
A. L.
Stevens
, and
J. Y.
Han
, “
Million-fold preconcentration of proteins and peptides by nanofluidic filter
,”
Anal. Chem.
77
(
14
),
4293
4299
(
2005
).
5.
J. H.
Lee
,
Y. A.
Song
, and
J. Y.
Han
, “
Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane
,”
Lab Chip
8
(
4
),
596
601
(
2008
).
6.
R. J.
Meagher
and
N.
Thaitrong
, “
Microchip electrophoresis of DNA following preconcentration at photopatterned gel membranes
,”
Electrophoresis
33
(
8
),
1236
1246
(
2012
).
7.
Z.
Slouka
 et al, “
Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer
,”
Talanta
145
,
35
42
(
2015
).
8.
S. J.
Kim
,
Y. A.
Song
, and
J.
Han
, “
Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications
,”
Chem. Soc. Rev.
39
(
3
),
912
922
(
2010
).
9.
M.
Li
and
R. K.
Anand
, “
Recent advancements in ion concentration polarization
,”
Analyst
141
(
12
),
3496
3510
(
2016
).
10.
I.
Vlassiouk
,
S.
Smirnov
, and
Z.
Siwy
, “
Ionic selectivity of single nanochannels
,”
Nano Lett.
8
(
7
),
1978
1985
(
2008
).
11.
K.
Sollner
, “
Recent advances in the electrochemistry of membranes of high ionic selectivity
,”
J. Electrochem. Soc.
97
(
7
),
C139
C151
(
1950
).
12.
Z.
Slouka
,
S.
Senapati
, and
H. C.
Chang
, “
Microfluidic systems with ion-selective membranes
,”
Annu. Rev. Anal. Chem.
7
(
7
),
317
335
(
2014
).
13.
G.
Yossifon
 et al, “
Nonlinear current-voltage characteristics of nanochannels
,”
Phys. Rev. E
79
(
4
),
046305
(
2009
).
14.
G.
Yossifon
,
P.
Mushenheim
, and
H. C.
Chang
, “
Controlling nanoslot overlimiting current with the depth of a connecting microchamber
,”
Europhys. Lett.
90
(
6
),
64004
(
2010
).
15.
L.
Vobecká
,
T.
Belloň
, and
Z.
Slouka
, “
Behavior of embedded cation-exchange particles in a DC electric field
,”
Int. J. Mol. Sci.
20
(
14
),
3579
(
2019
).
16.
T.
Belloň
,
P. P.
Lucie Vobecká
,
M.
Svoboda
, and
Z.
Slouka
, “
Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement
,”
J. Membr. Sci.
572
,
607
618
(
2019
).
17.
M.
Svoboda
 et al, “
Cation exchange membrane integrated into a microfluidic device
,”
Microelectron. Eng.
86
(
4–6
),
1371
1374
(
2009
).
18.
T. W.
Xu
, “
Ion exchange membranes: State of their development and perspective
,”
J. Membr. Sci.
263
(
1-2
),
1
29
(
2005
).
19.
A.
Dabrowski
 et al, “
Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method
,”
Chemosphere
56
(
2
),
91
106
(
2004
).
20.
H. C.
Chang
,
G.
Yossifon
, and
E. A.
Demekhin
, “
Nanoscale electrokinetics and microvortices: How microhydrodynamics affects nanofluidic ion flux
,”
Annu. Rev. Fluid Mech.
44
(
44
),
401
426
(
2012
).
21.
H. C.
Chang
and
G.
Yossifon
, “
Understanding electrokinetics at the nanoscale: A perspective
,”
Biomicrofluidics
3
(
1
),
012001
(
2009
).
22.
S. J.
Kim
 et al, “
Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel
,”
Phys. Rev. Lett.
99
(
4
),
044501
(
2007
).
23.
J. C.
de Valenca
 et al, “
Dynamics of microvortices induced by ion concentration polarization
,”
Phys. Rev. E
92
(
3
),
031003(R)
(
2015
).
24.
H. C.
Chang
and
L. Y.
Yeo
,
Electrokinetically Driven Microfluidics and Nanofluidics
(
Cambridge University Press
,
Cambridge
,
2010
), 508 pp.
25.
R.
Ibanez
,
D. F.
Stamatialis
, and
M.
Wessling
, “
Role of membrane surface in concentration polarization at cation exchange membranes
,”
J. Membr. Sci.
239
(
1
),
119
128
(
2004
).
26.
I.
Rubinstein
,
B.
Zaltzman
, and
I.
Lerman
, “
Electroconvective instability in concentration polarization and nonequilibrium electro-osmotic slip
,”
Phys. Rev. E
72
(
1)
,
011505
(
2005
).
27.
F. C.
Leinweber
and
U.
Tallarek
, “
Concentration polarization-based nonlinear electrokinetics in porous media: Induced-charge electroosmosis
,”
J. Phys. Chem. B
109
(
46
),
21481
21485
(
2005
).
28.
V. V.
Nikonenko
 et al, “
Desalination at overlimiting currents: State-of-the-art and perspectives
,”
Desalination
342
,
85
106
(
2014
).
29.
Z.
Slouka
 et al, “
Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures
,”
Langmuir
29
(
26
),
8275
8283
(
2013
).
30.
D. T.
Conroy
 et al, “
Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane
,”
Phys. Rev. E
86
(
5
),
056104
(
2012
).
31.
R.
Simons
, “
Water splitting in ion-exchange membranes
,”
Electrochim. Acta
30
(
3
),
275
282
(
1985
).
32.
E.
Belova
 et al, “
Role of water splitting in development in ion-exchange membrane of electroconvection systems
,”
Desalination
199
(
1–3
),
59
61
(
2006
).
33.
J.
Choi
 et al, “
Selective preconcentration and online collection of charged molecules using ion concentration polarization
,”
RSC Adv.
5
(
81
),
66178
66184
(
2015
).
34.
S. H.
Ko
 et al, “
Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization
,”
Lab Chip
12
(
21
),
4472
4482
(
2012
).
35.
S.
Marczak
 et al, “
Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis
,”
Biosens. Bioelectron.
86
,
840
848
(
2016
).
36.
S.
Marczak
 et al, “
Simultaneous isolation and preconcentration of exosomes by ion concentration polarization
,”
Electrophoresis
39
(
15
),
2029
2038
(
2018
).
37.
H.
Jeon
 et al, “
Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region
,”
Sci. Rep.
3
,
3483
(
2013
).
38.
G.
Sun
,
S.
Senapati
, and
H. C.
Chang
, “
High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: A new scalable ionic circuit platform
,”
Lab Chip
16
(
7
),
1171
1177
(
2016
).
39.
G.
Sun
,
Z.
Slouka
, and
H. C.
Chang
, “
Fluidic-based ion memristors and ionic latches
,”
Small
11
(
39
),
5206
5213
(
2015
).
40.
S.
Park
 et al, “
Capillarity ion concentration polarization as spontaneous desalting mechanism
,”
Nat. Commun.
7
,
11223
(
2016
).
41.
B.
Kim
 et al, “
Purification of high salinity brine by multi-stage ion concentration polarization desalination
,”
Sci. Rep.
6
,
31850
(
2016
).
42.
B. D.
MacDonald
 et al, “
Out-of-plane ion concentration polarization for scalable water desalination
,”
Lab Chip
14
(
4
),
681
685
(
2014
).
43.
J.
Astorga-Wells
,
T.
Bergman
, and
H.
Jornvall
, “
Multistep microreactions with proteins using electrocapture technology
,”
Anal. Chem.
76
(
9
),
2425
2429
(
2004
).
44.
M.
Yamada
 et al, “
Rapid quantification of disease-marker proteins using continuous-flow immunoseparation in a nanosieve fluidic device
,”
Anal. Chem.
81
(
16
),
7067
7074
(
2009
).
45.
S. J.
Kim
,
L. D.
Li
, and
J.
Han
, “
Amplified electrokinetic response by concentration polarization near nanofluidic channel
,”
Langmuir
25
(
13
),
7759
7765
(
2009
).
46.
R.
Kwak
 et al, “
Microscale electrodialysis: Concentration profiling and vortex visualization
,”
Desalination
308
,
138
146
(
2013
).
47.
R.
Kwak
 et al, “
Enhanced salt removal by unipolar ion conduction in ion concentration polarization desalination
,”
Sci. Rep.
6
,
25349
(
2016
).
48.
B.
Kim
 et al, “
Partial desalination of hypersaline brine by lab-scale ion concentration polarization device
,”
Desalination
412
,
20
31
(
2017
).
49.
M.
Svoboda
 et al, “
Fabrication of plastic microchips with gold microelectrodes using techniques of sacrificed substrate and thermally activated solvent bonding
,”
Microelectron. Eng.
87
(
5–8
),
1590
1593
(
2010
).
50.
J.
Astorga-Wells
and
H.
Swerdlow
, “
Fluidic preconcentrator device for capillary electrophoresis of proteins
,”
Anal. Chem.
75
(
19
),
5207
5212
(
2003
).

Supplementary Material

You do not currently have access to this content.