Understanding gene regulation networks in multicellular organisms is crucial to decipher many complex physiological processes ranging from development to aging. One technique to characterize gene expression with tissue-specificity in whole organisms is single-molecule fluorescence in situ hybridization (smFISH). However, this protocol requires lengthy incubation times, and it is challenging to achieve multiplexed smFISH in a whole organism. Multiplexing techniques can yield transcriptome-level information, but they require sequential probing of different genes. The inefficient macromolecule exchange through diffusion-dominant transport across dense tissues is the major bottleneck. In this work, we address this challenge by developing a microfluidic/electrokinetic hybrid platform to enable multicycle smFISH in an intact model organism, Caenorhabditis elegans. We integrate an ion concentration polarization based ion pump with a microfluidic array to rapidly deliver and remove gene-specific probes and stripping reagents on demand in individual animals. Using our platform, we can achieve rapid smFISH, an order of magnitude faster than traditional smFISH protocols. We also demonstrate the capability to perform multicycle smFISH on the same individual samples, which is impossible to do off-chip. Our method hence provides a powerful tool to study individual-specific, spatially resolvable, and large-scale gene expression in whole organisms.

1.
M.
Schmid
,
T. S.
Davison
,
S. R.
Henz
,
U. J.
Pape
,
M.
Demar
,
M.
Vingron
,
B.
Scholkopf
,
D.
Weigel
, and
J. U.
Lohmann
,
Nat. Genet.
37
(
5
),
501
506
(
2005
).
2.
P.
Tomancak
,
A.
Beaton
,
R.
Weiszmann
,
E.
Kwan
,
S.
Shu
,
S. E.
Lewis
,
S.
Richards
,
M.
Ashburner
,
V.
Hartenstein
,
S. E.
Celniker
, and
G. M.
Rubin
,
Genome Biol.
3
(
12
), research0088 (
2002
).
3.
J.
Lund
,
P.
Tedesco
,
K.
Duke
,
J.
Wang
,
S. K.
Kim
, and
T. E.
Johnson
,
Curr. Biol.
12
(
18
),
1566
1573
(
2002
).
4.
L.
Guarente
and
C.
Kenyon
,
Nature
408
(
6809
),
255
262
(
2000
).
5.
M. B.
Elowitz
,
A. J.
Levine
,
E. D.
Siggia
, and
P. S.
Swain
,
Science
297
(
5584
),
1183
1186
(
2002
).
6.
A.
Raj
and
A.
van Oudenaarden
,
Cell
135
(
2
),
216
226
(
2008
).
7.
S. L.
Rea
,
D.
Wu
,
J. R.
Cypser
,
J. W.
Vaupel
, and
T. E.
Johnson
,
Nat. Genet.
37
(
8
),
894
898
(
2005
).
8.
M. F.
Wernet
,
E. O.
Mazzoni
,
A.
Celik
,
D. M.
Duncan
,
I.
Duncan
, and
C.
Desplan
,
Nature
440
(
7081
),
174
180
(
2006
).
9.
A.
Raj
,
P.
van den Bogaard
,
S. A.
Rifkin
,
A.
van Oudenaarden
, and
S.
Tyagi
,
Nat. Methods
5
,
877
(
2008
).
10.
C. L.
Eng
,
M.
Lawson
,
Q.
Zhu
,
R.
Dries
,
N.
Koulena
,
Y.
Takei
,
J.
Yun
,
C.
Cronin
,
C.
Karp
,
G. C.
Yuan
, and
L.
Cai
,
Nature
568
(
7751
),
235
239
(
2019
).
11.
K. H.
Chen
,
A. N.
Boettiger
,
J. R.
Moffitt
,
S.
Wang
, and
X.
Zhuang
,
Science
348
(
6233
),
aaa6090
(
2015
).
12.
Z.
Slouka
,
S.
Senapati
, and
H.-C.
Chang
,
Annu. Rev. Anal. Chem.
7
(
1
),
317
335
(
2014
).
13.
S. J.
Kim
,
Y.-C.
Wang
,
J. H.
Lee
,
H.
Jang
, and
J.
Han
,
Phys. Rev. Lett.
99
(
4
),
044501
(
2007
).
14.
Z.
Slouka
,
S.
Senapati
,
S.
Shah
,
R.
Lawler
,
Z.
Shi
,
M. S.
Stack
, and
H.-C.
Chang
,
Talanta
145
,
35
42
(
2015
).
15.
G.
Sun
,
Z.
Pan
,
S.
Senapati
, and
H.-C.
Chang
,
Phys. Rev. Appl.
7
(
6
),
064024
(
2017
).
16.
G.
Sun
,
S.
Senapati
, and
H.-C.
Chang
,
Lab Chip
16
(
7
),
1171
1177
(
2016
).
17.
S.
Marczak
,
S.
Senapati
,
Z.
Slouka
, and
H.-C.
Chang
,
Biosens. Bioelectron.
86
,
840
848
(
2016
).
18.
L.-J.
Cheng
and
H.-C.
Chang
,
Biomicrofluidics
5
(
4
),
46502
465028
(
2011
).
19.
L.-J.
Cheng
and
H.-C.
Chang
,
Lab Chip
14
(
5
),
979
987
(
2014
).
20.
Y.
Qu
,
L. A.
Marshall
, and
J. G.
Santiago
,
Anal. Chem.
86
(
15
),
7264
7268
(
2014
).
21.
H.
Lee
,
S. A.
Kim
,
S.
Coakley
,
P.
Mugno
,
M.
Hammarlund
,
M. A.
Hilliard
, and
H.
Lu
,
Lab Chip
14
(
23
),
4513
4522
(
2014
).
22.
F.
Mueller
,
A.
Senecal
,
K.
Tantale
,
H.
Marie-Nelly
,
N.
Ly
,
O.
Collin
,
E.
Basyuk
,
E.
Bertrand
,
X.
Darzacq
, and
C.
Zimmer
,
Nat. Methods
10
(
4
),
277
278
(
2013
).
23.
I.
Rubinstein
,
Electro-Diffusion of Ions
(
SIAM
, Philadelphia,
1990
).
24.
M.
Bercovici
,
C. M.
Han
,
J. C.
Liao
, and
J. G.
Santiago
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
28
),
11127
11132
(
2012
).
25.
A.
Tsourkas
,
M. A.
Behlke
,
S. D.
Rose
, and
G.
Bao
,
Nucleic Acids Res.
31
(
4
),
1319
1330
(
2003
).
26.
G.
Yossifon
and
H.-C.
Chang
,
Phys. Rev. Lett.
101
(
25
),
254501
(
2008
).
27.
G.
Yossifon
,
P.
Mushenheim
,
Y. C.
Chang
, and
H. C.
Chang
,
Phys. Rev. E
79
(
4)
,
046305
(
2009
).
28.
M.
Tsuruoka
,
K.
Yano
,
K.
Ikebukuro
,
H.
Nakayama
,
Y.
Masuda
, and
I.
Karube
,
J. Biotechnol.
48
(
3
),
201
208
(
1996
).
29.
B. S.
Fujimoto
,
J. M.
Miller
,
N. S.
Ribeiro
, and
J. M.
Schurr
,
Biophys. J.
67
(
1
),
304
308
(
1994
).
30.
J.
Quist
,
K. G. H.
Janssen
,
P.
Vulto
,
T.
Hankemeier
, and
H. J.
van der Linden
,
Anal. Chem.
83
(
20
),
7910
7915
(
2011
).
31.
J.
Quist
,
P.
Vulto
,
H.
van der Linden
, and
T.
Hankemeier
,
Anal. Chem.
84
(
21
),
9065
9071
(
2012
).
32.
J.-H.
Hahm
,
S.
Kim
, and
Y.-K.
Paik
,
Aging Cell
8
(
4
),
473
483
(
2009
).
33.
J. D.
Meisel
,
O.
Panda
,
P.
Mahanti
,
F. C.
Schroeder
, and
D. H.
Kim
,
Cell
159
(
2
),
267
280
(
2014
).
34.
R.
Bharadwaj
,
J. G.
Santiago
, and
B.
Mohammadi
,
Electrophoresis
23
(
16
),
2729
2744
(
2002
).

Supplementary Material

You do not currently have access to this content.