This paper describes the behavior of particles in a deterministic lateral displacement (DLD) separation device with DC and AC electric fields applied orthogonal to the fluid flow. As proof of principle, we demonstrate tunable microparticle and nanoparticle separation and fractionation depending on both particle size and zeta potential. DLD is a microfluidic technique that performs size-based binary separation of particles in a continuous flow. Here, we explore how the application of both DC and AC electric fields (separate or together) can be used to improve separation in a DLD device. We show that particles significantly smaller than the critical diameter of the device can be efficiently separated by applying orthogonal electric fields. Following the application of a DC voltage, Faradaic processes at the electrodes cause local changes in medium conductivity. This conductivity change creates an electric field gradient across the channel that results in a nonuniform electrophoretic velocity orthogonal to the primary flow direction. This phenomenon causes particles to focus on tight bands as they flow along the channel countering the effect of particle diffusion. It is shown that the final lateral displacement of particles depends on both particle size and zeta potential. Experiments with six different types of negatively charged particles and five different sizes (from 100 nm to 3 μm) and different zeta potential demonstrate how a DC electric field combined with AC electric fields (that causes negative-dielectrophoresis particle deviation) could be used for fractionation of particles on the nanoscale in microscale devices.

1.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
,
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
2.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D.
Di Carlo
,
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
3.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
,
987
990
(
2004
).
4.
D. W.
Inglis
,
J. A.
Davis
,
R. H.
Austin
, and
J. C.
Sturm
,
Lab Chip
6
,
655
658
(
2006
).
5.
D. W.
Inglis
,
Appl. Phys. Lett.
94
,
013510
(
2009
).
6.
S.-C.
Kim
,
B. H.
Wunsch
,
H.
Hu
,
J. T.
Smith
,
R. H.
Austin
, and
G.
Stolovitzky
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
E5034
E5041
(
2017
).
7.
J. A.
Davis
, “Microfluidic separation of blood components through deterministic lateral displacement,” Ph.D. thesis, Princeton University, 2008.
8.
J.
McGrath
,
M.
Jimenez
, and
H.
Bridle
,
Lab Chip
14
,
4139
4158
(
2014
).
9.
K.
Loutherback
,
K. S.
Chou
,
J.
Newman
,
J.
Puchalla
,
R. H.
Austin
, and
J. C.
Sturm
,
Microfluid. Nanofluid.
9
,
1143
1149
(
2010
).
10.
Z.
Liu
,
F.
Huang
,
J.
Du
,
W.
Shu
,
H.
Feng
,
X.
Xu
, and
Y.
Chen
,
Biomicrofluidics
7
,
011801
(
2013
).
11.
K. K.
Zeming
,
S.
Ranjan
, and
Y.
Zhang
,
Nat. Commun.
4
,
1625
1628
(
2013
).
12.
S.
Ranjan
,
K. K.
Zeming
,
R.
Jureen
,
D.
Fisher
, and
Y.
Zhang
,
Lab Chip
14
,
4250
4262
(
2014
).
13.
K. K.
Zeming
,
T.
Salafi
,
C. H.
Chen
, and
Y.
Zhang
,
Sci. Rep.
6
,
22934
(
2016
).
14.
M.
Xavier
,
S. H.
Holm
,
J. P.
Beech
,
D.
Spencer
,
J. O.
Tegenfeldt
,
R. O. C.
Oreffo
, and
H.
Morgan
,
Lab Chip
19
,
513
523
(
2019
).
15.
J. P.
Beech
and
J. O.
Tegenfeldt
,
Lab Chip
8
,
657
659
(
2008
).
16.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
18892
18897
(
2007
).
17.
M.
Yamada
,
M.
Nakashima
, and
M.
Seki
,
Anal. Chem.
76
,
5465
5471
(
2004
).
18.
T.
Salafi
,
K. K.
Zeming
, and
Y.
Zhang
,
Lab Chip
17
,
11
33
(
2017
).
19.
J. C.
Contreras-Naranjo
,
H. J.
Wu
, and
V. M.
Ugaz
,
Lab Chip
17
,
3558
3577
(
2017
).
20.
B. H.
Wunsch
,
J. T.
Smith
,
S. M.
Gifford
,
C.
Wang
,
M.
Brink
,
R. L.
Bruce
,
R. H.
Austin
,
G.
Stolovitzky
, and
Y.
Astier
,
Nat. Nanotechnol.
11
,
936
940
(
2016
).
21.
J. T.
Smith
,
B. H.
Wunsch
,
N.
Dogra
,
M. E.
Ahsen
,
K.
Lee
,
K. K.
Yadav
,
R.
Weil
,
M. A.
Pereira
,
J. V.
Patel
,
E. A.
Duch
,
J. M.
Papalia
,
M. F.
Lofaro
,
M.
Gupta
,
A. K.
Tewari
,
C.
Cordon-Cardo
,
G.
Stolovitzky
, and
S. M.
Gifford
,
Lab Chip
18
,
3913
3925
(
2018
).
22.
R.
Devendra
and
G.
Drazer
,
Anal. Chem.
84
,
10621
10627
(
2012
).
23.
J. P.
Beech
,
P.
Jönsson
, and
J. O.
Tegenfeldt
,
Lab Chip
9
,
2698
2706
(
2009
).
24.
J. P.
Beech
,
K.
Keim
,
B. D.
Ho
,
C.
Guiducci
, and
J. O.
Tegenfeldt
,
Adv. Mater. Technol.
4
,
1900339
(
2019
).
25.
V.
Calero
,
P.
Garcia-Sanchez
,
C.
Honrado
,
A.
Ramos
, and
H.
Morgan
,
Lab Chip
19
,
1386
1396
(
2019
).
26.
B. H.
Lapizco-Encinas
,
Electrophoresis
40
(3), 358–375 (
2019
).
27.
L.
Liang
,
Y.
Ai
,
J.
Zhu
,
S.
Qian
, and
X.
Xuan
,
J. Colloid Interface Sci.
347
,
142
146
(
2010
).
28.
D.
Hlushkou
,
R. K.
Perdue
,
R.
Dhopeshwarkar
,
R. M.
Crooks
, and
U.
Tallarek
,
Lab Chip
9
,
1903
1913
(
2009
).
29.
B.
Jung
,
R.
Bharadwaj
, and
J. G.
Santiago
,
Anal. Chem.
78
,
2319
2327
(
2006
).
30.
S. S.
Bahga
and
J. G.
Santiago
,
Analyst
138
,
735
754
(
2013
).
31.
W. Y.
Ng
,
A.
Ramos
,
Y. C.
Lam
,
I. P.
Mahendra Wijaya
, and
I.
Rodriguez
,
Lab Chip
11
,
4241
4247
(
2011
).
32.
K. F.
Warnick
,
S. J.
Francom
,
P. H.
Humble
,
R. T.
Kelly
,
A. T.
Woolley
,
M. L.
Lee
, and
H. D.
Tolley
,
Electrophoresis
26
,
405
414
(
2005
).
You do not currently have access to this content.