Deterministic lateral displacement (DLD) microfluidic devices promise versatile and precise processing of biological samples. However, this prospect has been realized so far only for rigid spherical particles and remains limited for biological cells due to the complexity of cell dynamics and deformation in microfluidic flow. We employ mesoscopic hydrodynamics simulations of red blood cells (RBCs) in DLD devices with circular posts to better understand the interplay between cell behavior in complex microfluidic flow and sorting capabilities of such devices. We construct a mode diagram of RBC behavior (e.g., displacement, zig-zagging, and intermediate modes) and identify several regimes of RBC dynamics (e.g., tumbling, tank-treading, and trilobe motion). Furthermore, we link the complex interaction dynamics of RBCs with the post to their effective cell size and discuss relevant physical mechanisms governing the dynamic cell states. In conclusion, sorting of RBCs in DLD devices based on their shear elasticity is, in general, possible but requires fine-tuning of flow conditions to targeted mechanical properties of the RBCs.

1.
G.
Bao
and
S.
Suresh
,
Nat. Mater.
2
,
715
725
(
2003
).
2.
D.
Di Carlo
,
J. Lab. Autom.
17
,
32
42
(
2012
).
3.
M.
Antfolk
and
T.
Laurell
,
Anal. Chim. Acta
965
,
9
35
(
2017
).
4.
Y.
Zhang
,
C.
Huang
,
S.
Kim
,
M.
Golkaram
,
M. W.
Dixon
,
L.
Tilley
,
J.
Li
,
S.
Zhang
, and
S.
Suresh
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
6068
6073
(
2015
).
5.
D. A.
Fedosov
,
Drug Discov. Today Dis. Models
16
,
17
22
(
2015
).
6.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
,
987
990
(
2004
).
7.
J.
McGrath
,
M.
Jimenez
, and
H.
Bridle
,
Lab Chip
14
,
4139
4158
(
2014
).
8.
Z.
Zhang
,
E.
Henry
,
G.
Gompper
, and
D. A.
Fedosov
,
J. Chem. Phys.
143
,
243145
(
2015
).
9.
D. W.
Inglis
,
J. A.
Davis
,
R. H.
Austin
, and
J. C.
Sturm
,
Lab Chip
6
,
655
658
(
2006
).
10.
B. R.
Long
,
M.
Heller
,
J. P.
Beech
,
H.
Linke
,
H.
Bruus
, and
J. O.
Tegenfeldt
,
Phys. Rev. E
78
,
046304
(
2008
).
11.
R.
Vernekar
,
T.
Krüger
,
K.
Loutherback
,
K.
Morton
, and
D.
Inglis
,
Lab Chip
17
,
3318
3330
(
2017
).
12.
S. C.
Kim
,
B. H.
Wunsch
,
H.
Hu
,
J. T.
Smith
,
R. H.
Austin
, and
G.
Stolovitzky
,
Proc. Natl. Acad. Sci. U.S.A.
114
,
E5034
E5041
(
2017
).
13.
T.
Kulrattanarak
,
R. G.
van der Sman
,
Y. S.
Lubbersen
,
C. G.
Schroen
,
H. T.
Pham
,
P. M.
Sarro
, and
R. M.
Boom
,
J. Colloid Interface Sci.
354
,
7
14
(
2011
).
14.
J. A.
Davis
,
D. W.
Inglis
,
K. J.
Morton
,
D. A.
Lawrence
,
L. R.
Huang
,
S. Y.
Chou
,
J. C.
Sturm
, and
R. H.
Austin
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
14779
14784
(
2006
).
15.
S. H.
Holm
,
J. P.
Beech
,
M. P.
Barrett
, and
J. O.
Tegenfeldt
,
Lab Chip
11
,
1326
1332
(
2011
).
16.
E.
Henry
,
S. H.
Holm
,
Z.
Zhang
,
J. P.
Beech
,
J. O.
Tegenfeldt
,
D. A.
Fedosov
, and
G.
Gompper
,
Sci. Rep.
6
,
34375
(
2016
).
17.
D.
Holmes
,
G.
Whyte
,
J.
Bailey
,
N.
Vergara-Irigaray
,
A.
Ekpenyong
,
J.
Guck
, and
T.
Duke
,
Interface Focus
4
,
20140011
(
2014
).
18.
S.
Ranjan
,
K. K.
Zeming
,
R.
Jureen
,
D.
Fisher
, and
Y.
Zhang
,
Lab Chip
14
,
4250
4262
(
2014
).
19.
K. K.
Zeming
,
S.
Ranjan
, and
Y.
Zhang
,
Nat. Commun.
4
,
1625
(
2013
).
20.
D. A.
Fedosov
,
M.
Peltomaki
, and
G.
Gompper
,
Soft Matter
10
,
4258
4267
(
2014
).
21.
J.
Mauer
,
S.
Mendez
,
L.
Lanotte
,
F.
Nicoud
,
M.
Abkarian
,
G.
Gompper
, and
D. A.
Fedosov
,
Phys. Rev. Lett.
121
,
118103
(
2018
).
22.
K.
Sinha
and
M. D.
Graham
,
Phys. Rev. E
92
,
042710
(
2015
).
23.
D.
Cordasco
,
A.
Yazdani
, and
P.
Bagchi
,
Phys. Fluids
26
,
041902
(
2014
).
24.
T.
Krüger
,
D.
Holmes
, and
P. V.
Coveney
,
Biomicrofluidics
8
,
054114
(
2014
).
25.
J. P.
Beech
,
S. H.
Holm
,
K.
Adolfsson
, and
J. O.
Tegenfeldt
,
Lab Chip
12
,
1048
1051
(
2012
).
26.
Z. M.
Zhang
,
W.
Chien
,
E.
Henry
,
D. A.
Fedosov
, and
G.
Gompper
,
Phys. Rev. Fluids
4
,
024201
(
2019
).
27.
J.
Dupire
,
M.
Socol
, and
A.
Viallat
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
20808
20813
(
2012
).
28.
29.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
,
Comput. Methods Appl. Mech. Eng.
199
,
1937
1948
(
2010
).
30.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
,
Biophys. J.
98
,
2215
2225
(
2010
).
31.
D. A.
Fedosov
,
H.
Noguchi
, and
G.
Gompper
,
Biomech. Model. Mechanobiol.
13
,
239
258
(
2014
).
32.
H.
Noguchi
and
G.
Gompper
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
14159
14164
(
2005
).
33.
P.
Espanol
and
M.
Revenga
,
Phys. Rev. E
67
,
026705
(
2003
).
34.
K.
Müller
,
D. A.
Fedosov
, and
G.
Gompper
,
J. Comput. Phys.
281
,
301
315
(
2015
).
35.
A.
Vazquez-Quesada
,
M.
Ellero
, and
P.
Espanol
,
J. Chem. Phys.
130
,
034901
(
2009
).
36.
M.
Ellero
and
P.
Español
,
Appl. Math. Mech. Engl. Ed.
39
,
103
124
(
2017
).
37.
M.
Chen
and
F. J.
Boyle
,
Mater. Sci. Eng. C
43
,
506
516
(
2014
).
38.
J. B.
Freund
,
Annu. Rev. Fluid Mech.
46
,
67
95
(
2014
).
39.
Z.
Peng
,
A.
Mashayekh
, and
Q.
Zhu
,
J. Fluid Mech.
742
,
96
118
(
2014
).
40.
D.
Alizadehrad
and
D. A.
Fedosov
,
J. Comput. Phys.
356
,
303
318
(
2018
).
41.
D. A.
Fedosov
and
G. E.
Karniadakis
,
J. Comput. Phys.
228
,
1157
1171
(
2009
).
42.
J. M.
Skotheim
and
T. W.
Secomb
,
Phys. Rev. Lett.
98
,
078301
(
2007
).
43.
M.
Abkarian
,
M.
Faivre
, and
A.
Viallat
,
Phys. Rev. Lett.
98
,
188302
(
2007
).
44.
L.
Lanotte
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J. M.
Fromental
,
V.
Claveria
,
F.
Nicoud
,
G.
Gompper
, and
M.
Abkarian
,
Proc. Natl. Acad. Sci. U.S.A.
113
,
13289
13294
(
2016
).
45.
D.
Cordasco
and
P.
Bagchi
,
Phys. Fluids
25
,
091902
(
2013
).
46.
Z.
Peng
and
Q.
Zhu
,
Soft Matter
9
,
7617
7627
(
2013
).
47.
B. H.
Wunsch
,
S. C.
Kim
,
S. M.
Gifford
,
Y.
Astier
,
C.
Wang
,
R. L.
Bruce
,
J. V.
Patel
,
E. A.
Duch
,
S.
Dawes
,
G.
Stolovitzky
, and
J. T.
Smith
,
Lab Chip
19
,
1567
1578
(
2019
).
48.
M.
Abkarian
,
C.
Lartigue
, and
A.
Viallat
,
Phys. Rev. Lett.
88
,
068103
(
2002
).
49.
S.
Messlinger
,
B.
Schmidt
,
H.
Noguchi
, and
G.
Gompper
,
Phys. Rev. E
80
,
011901
(
2009
).
50.
A.
Guckenberger
,
A.
Kihm
,
T.
John
,
C.
Wagner
, and
S.
Gekle
,
Soft Matter
14
,
2032
2043
(
2018
).
51.
Jülich Supercomputing Centre
,
J. Large-Scale Res. Facil.
4
,
A132
(
2018
).

Supplementary Material

You do not currently have access to this content.