Slip-driven microfluidic devices can manipulate fluid by the relative movement of microfluidic plates that are in close contact. Since the demonstration of the first SlipChip device, many slip-driven microfluidic devices with different form factors have been developed, including SlipPAD, SlipDisc, sliding stripe, and volumetric bar chart chip. Slip-driven microfluidic devices can be fabricated from glass, quartz, polydimethylsiloxane, paper, and plastic with various fabrication methods: etching, casting, wax printing, laser cutting, micromilling, injection molding, etc. The slipping operation of the devices can be performed manually, by a micrometer with a base station, or autonomously, by a clockwork mechanism. A variety of readout methods other than fluorescence microscopy have been demonstrated, including both fluorescence detection and colorimetric detection by mobile phones, direct visual detection, and real-time fluorescence imaging. This review will focus on slip-driven microfluidic devices for nucleic acid analysis, including multiplex nucleic acid detection, digital nucleic acid quantification, real-time nucleic acid amplification, and sample-in-answer-out nucleic acid analysis. Slip-driven microfluidic devices present promising approaches for both life science research and clinical molecular diagnostics.

1.
B. J.
Hindson
,
K. D.
Ness
,
D. A.
Masquelier
,
P.
Belgrader
,
N. J.
Heredia
,
A. J.
Makarewicz
,
I. J.
Bright
,
M. Y.
Lucero
,
A. L.
Hiddessen
,
T. C.
Legler
 et al., “
High-throughput droplet digital PCR system for absolute quantitation of DNA copy number
,”
Anal. Chem.
83
(
22
),
8604
8610
(
2011
).
2.
M. M.
Kiss
,
L.
Ortoleva-Donnelly
,
N.
Reginald Beer
,
J.
Warner
,
C. G.
Bailey
,
B. W.
Colston
,
J. M.
Rothberg
,
D. R.
Link
, and
J. H.
Leamon
, “
High-throughput quantitative PCR in picoliter droplets
,”
Anal. Chem.
80
(
23
),
8975
8981
(
2009
).
3.
S. A.
Cronier
,
R. A.
Mathies
,
R. G.
Blazej
,
P.
Kumaresan
, and
C. J.
Yang
, “
High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets
,”
Anal. Chem.
80
(
10
),
3522
3529
(
2008
).
4.
A. C.
Hatch
,
J. S.
Fisher
,
A. R.
Tovar
,
A. T.
Hsieh
,
R.
Lin
,
S. L.
Pentoney
,
D. L.
Yang
, and
A. P.
Lee
, “
1-million droplet array with wide-field fluorescence imaging for digital PCR
,”
Lab Chip
11
(
22
),
3838
3845
(
2011
).
5.
X.
Xu
,
H.
Yuan
,
R.
Song
,
M.
Yu
,
H. Y.
Chung
,
Y.
Hou
,
Y.
Shang
,
H.
Zhou
, and
S.
Yao
, “
High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR
,”
Biomicrofluidics
12
(
1
),
014103
(
2018
).
6.
E. A.
Ottesen
,
J. W.
Hong
,
S. R.
Quake
, and
J. R.
Leadbetter
, “
Environmental bacteria
,”
Science
314
,
1464
1467
(
2006
).
7.
N. Q.
Balaban
,
J.
Merrin
,
R.
Chait
,
L.
Kowalik
, and
S.
Leibler
, “
Monolithic microfabricated valves and pumps by multilayer soft lithography
,”
Science
288
(
5463
),
113
116
(
2004
).
8.
D.
Conte
,
C.
Verri
,
C.
Borzi
,
P.
Suatoni
,
U.
Pastorino
,
G.
Sozzi
, and
O.
Fortunato
, “
Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR
,”
BMC Genomics
16
(
1
),
849
(
2015
).
9.
X.
Li
,
D.
Zhang
,
H.
Zhang
,
Z.
Guan
,
Y.
Song
,
R.
Liu
,
Z.
Zhu
, and
C.
Yang
, “
Microwell array method for rapid generation of uniform agarose droplets and beads for single molecule analysis
,”
Anal. Chem.
90
(
4
),
2570
2577
(
2018
).
10.
D.
Decrop
,
G.
Pardon
,
L.
Brancato
,
D.
Kil
,
R.
Zandi Shafagh
,
T.
Kokalj
,
T.
Haraldsson
,
R.
Puers
,
W.
van der Wijngaart
, and
J.
Lammertyn
, “
Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection
,”
ACS Appl. Mater. Interfaces
9
(
12
),
10418
10426
(
2017
).
11.
K.
Choi
,
A. H. C.
Ng
,
R.
Fobel
, and
A. R.
Wheeler
, “
Digital microfluidics
,”
Annu. Rev. Anal. Chem.
5
(
1
),
413
440
(
2012
).
12.
A. R.
Wheeler
, “
Putting electrowetting to work
,”
Science
322
(
5901
),
539
540
(
2008
).
13.
P.
Paik
,
V. K.
Pamula
, and
R. B.
Fair
, “
Rapid droplet mixers for digital microfluidic systems
,”
Lab Chip
3
(
4
),
253
259
(
2003
).
14.
R.
Fobel
,
A. E.
Kirby
,
A. H. C.
Ng
,
R. R.
Farnood
, and
A. R.
Wheeler
, “
Paper microfluidics goes digital
,”
Adv. Mater.
26
(
18
),
2838
2843
(
2014
).
15.
X. L.
Guo
,
Y.
Wei
,
Q.
Lou
,
Y.
Zhu
, and
Q.
Fang
, “
Manipulating femtoliter to picoliter droplets by pins for single cell analysis and quantitative biological assay
,”
Anal. Chem.
90
(
9
),
5810
5817
(
2018
).
16.
C.-Y.
Jiang
,
L.
Dong
,
J.-K.
Zhao
,
X.
Hu
,
C.
Shen
,
Y.
Qiao
,
X.
Zhang
,
Y.
Wang
,
R. F.
Ismagilov
,
S.-J.
Liu
 et al., “
High-throughput single-cell cultivation on microfluidic streak plates
,”
Appl. Environ. Microbiol.
82
(
7
),
2210
2218
(
2016
).
17.
Y.
Zhu
,
Y. X.
Zhang
,
W. W.
Liu
,
Y.
Ma
,
Q.
Fang
, and
B.
Yao
, “
Printing 2-dimensional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot
,”
Sci. Rep.
5
,
9551
(
2015
).
18.
W.
Du
,
L.
Li
,
K. P.
Nichols
, and
R. F.
Ismagilov
, “
SlipChip
,”
Lab Chip
9
(
16
),
2286
2292
(
2009
).
19.
C. W.
Chang
,
C. C.
Peng
,
W. H.
Liao
, and
Y. C.
Tung
, “
Polydimethylsiloxane SlipChip for mammalian cell culture applications
,”
Analyst
140
(
21
),
7355
7365
(
2015
).
20.
J. T.
Connelly
,
J. P.
Rolland
, and
G. M.
Whitesides
, “
“Paper machine” for molecular diagnostics
,”
Anal. Chem.
87
(
15
),
7595
7601
(
2015
).
21.
S.
Begolo
,
D. V.
Zhukov
,
D. A.
Selck
,
L.
Li
, and
R. F.
Ismagilov
, “
The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications
,”
Lab Chip
14
(
24
),
4616
4628
(
2014
).
22.
F.
Shen
,
W.
Du
,
E. K.
Davydova
,
M. A.
Karymov
,
J.
Pandey
, and
R. F.
Ismagilov
, “
Nanoliter multiplex PCR arrays on a SlipChip
,”
Anal. Chem.
82
(
11
),
4606
4612
(
2010
).
23.
D.
Cai
,
M.
Xiao
,
P.
Xu
,
Y. C.
Xu
, and
W.
Du
, “
An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens
,”
Lab Chip
14
(
20
),
3917
3924
(
2014
).
24.
Y.
Xia
,
Z.
Liu
,
S.
Yan
,
F.
Yin
,
X.
Feng
, and
B. F.
Liu
, “
Identifying multiple bacterial pathogens by loop-mediated isothermal amplification on a rotate & react SlipChip
,”
Sens. Actuators B Chem.
228
,
491
499
(
2016
).
25.
F.
Shen
,
W.
Du
,
J. E.
Kreutz
,
A.
Fok
, and
R. F.
Ismagilov
, “
Digital PCR on a SlipChip
,”
Lab Chip
10
(
20
),
2666
2672
(
2010
).
26.
F.
Shen
,
B.
Sun
,
J. E.
Kreutz
,
E. K.
Davydova
,
W.
Du
,
P. L.
Reddy
,
L. J.
Joseph
, and
R. F.
Ismagilov
, “
Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load
,”
J. Am. Chem. Soc.
133
(
44
),
17705
17712
(
2011
).
27.
F.
Shen
,
E. K.
Davydova
,
W.
Du
,
J. E.
Kreutz
,
O.
Piepenburg
, and
R. F.
Ismagilov
, “
Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip
,”
Anal. Chem.
83
(
9
),
3533
3540
(
2011
).
28.
J. E.
Kreutz
,
T.
Munson
,
T.
Huynh
,
F.
Shen
,
W.
Du
, and
R. F.
Ismagilov
, “
Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR
,”
Anal. Chem.
83
,
8158
8168
(
2011
).
29.
D. A.
Selck
,
M. A.
Karymov
,
B.
Sun
, and
R. F.
Ismagilov
, “
Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements
,”
Anal. Chem.
85
(
22
),
11129
11136
(
2013
).
30.
B.
Sun
,
F.
Shen
,
S. E.
McCalla
,
J. E.
Kreutz
,
M. A.
Karymov
, and
R. F.
Ismagilov
, “
Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol
,”
Anal. Chem.
85
(
3
),
1540
1546
(
2013
).
31.
M.
Yu
,
X.
Chen
,
H.
Qu
,
L.
Ma
,
L.
Xu
,
W.
Lv
,
H.
Wang
,
R. F.
Ismagilov
,
M.
Li
, and
F.
Shen
, “
Multistep SlipChip for the generation of serial dilution nanoliter arrays and hepatitis B viral load quantification by digital loop mediated isothermal amplification
,”
Anal. Chem.
(in press).
32.
M. N.
Tsaloglou
,
R. J.
Watson
,
C. M.
Rushworth
,
Y.
Zhao
,
X.
Niu
,
J. M.
Sutton
, and
H.
Morgan
, “
Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform
,”
Analyst
140
(
1
),
258
264
(
2015
).
33.
D. A.
Selck
and
R. F.
Ismagilov
, “
Instrument for real-time digital nucleic acid amplification on custom microfluidic devices
,”
PLoS One
11
(
10
),
e0163060
(
2016
).
34.
E. M.
Khorosheva
,
M. A.
Karymov
,
D. A.
Selck
, and
R. F.
Ismagilov
, “
Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: Validation using digital real-time RT-LAMP
,”
Nucleic Acids Res.
44
(
2
),
e10
(
2016
).
35.
L.
Li
,
W.
Du
, and
R.
Ismagilov
, “
Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods
,”
J. Am. Chem. Soc.
132
(
1
),
112
119
(
2010
).
36.
L.
Li
,
W.
Du
, and
R.
Ismagilov
, “
User-loaded SlipChip for equipment-free multiplexed nanoliter-scale experiments
,”
J. Am. Chem. Soc.
132
(
1
),
106
111
(
2010
).
37.
W.
Liu
,
D.
Chen
,
W.
Du
,
K. P.
Nichols
, and
R. F.
Ismagilov
, “
SlipChip for immunoassays in nanoliter volumes
,”
Anal. Chem.
82
(
8
),
3276
3282
(
2010
).
38.
S.
Ge
,
W.
Liu
,
T.
Schlappi
, and
R. F.
Ismagilov
, “
Digital, ultrasensitive, end-point protein measurements with large dynamic range via Brownian trapping with drift
,”
J. Am. Chem. Soc.
136
,
14662
14665
(
2014
).
39.
Y.
Song
,
Y.
Zhang
,
P. E.
Bernard
,
J. M.
Reuben
,
N. T.
Ueno
,
R. B.
Arlinghaus
,
Y.
Zu
, and
L.
Qin
, “
Multiplexed volumetric bar-chart chip for point-of-care diagnostics
,”
Nat. Commun.
3
,
1283
(
2012
).
40.
M. S.
Verma
,
M. N.
Tsaloglou
,
T.
Sisley
,
D.
Christodouleas
,
A.
Chen
,
J.
Milette
, and
G. M.
Whitesides
, “
Sliding-strip microfluidic device enables ELISA on paper
,”
Biosens. Bioelectron.
99
,
77
84
(
2018
).
41.
L.
Ma
,
J.
Kim
,
R.
Hatzenpichler
,
M. A.
Karymov
,
N.
Hubert
,
I. M.
Hanan
,
E. B.
Chang
, and
R. F.
Ismagilov
, “
Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa
,”
Proc. Natl. Acad. Sci. U.S.A.
111
(
27
),
9768
9773
(
2014
).
42.
L.
Ma
,
S. S.
Datta
,
M. A.
Karymov
,
Q.
Pan
,
S.
Begolo
, and
R. F.
Ismagilov
, “
Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips
,”
Integr. Biol.
6
,
796
805
(
2014
).
43.
C.
Shen
,
P.
Xu
,
Z.
Huang
,
D.
Cai
,
S. J.
Liu
, and
W.
Du
, “
Bacterial chemotaxis on SlipChip
,”
Lab Chip
14
(
16
),
3074
3080
(
2014
).
44.
S.
Wang
,
S.
Chen
,
J.
Wang
,
P.
Xu
,
Y.
Luo
,
Z.
Nie
, and
W.
Du
, “
Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry
,”
Electrophoresis
35
(
17
),
2528
2533
(
2014
).
45.
Y.
Zhao
,
F.
Pereira
,
A. J.
Demello
,
H.
Morgan
, and
X.
Niu
, “
Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a SlipChip
,”
Lab Chip
14
(
3
),
555
561
(
2014
).
46.
S. U.
Hassan
,
H.
Morgan
,
X.
Zhang
, and
X.
Niu
, “
Droplet interfaced parallel and quantitative microfluidic-based separations
,”
Anal. Chem.
87
(
7
),
3895
3901
(
2015
).
47.
Q.
Yi
,
D.
Cai
,
M.
Xiao
,
M.
Nie
,
Q.
Cui
,
J.
Cheng
,
C.
Li
,
J.
Feng
,
G.
Urban
,
Y.-C.
Xu
 et al., “
Direct antimicrobial susceptibility testing of bloodstream infection on SlipChip
,”
Biosens. Bioelectron.
135
,
200
207
(
2019
).
48.
S.
Begolo
,
F.
Shen
, and
R. F.
Ismagilov
, “
A microfluidic device for dry sample preservation in remote settings
,”
Lab Chip
13
(
22
),
4331
4342
(
2013
).
49.
A. K.
Yetisen
,
M. S.
Akram
, and
C. R.
Lowe
, “
Paper-based microfluidic point-of-care diagnostic devices
,”
Lab Chip
13
(
12
),
2210
2251
(
2013
).
50.
A. W.
Martinez
,
S. T.
Phillips
,
E.
Carrilho
,
S. W. T.
Iii
, and
G. M.
Whitesides
, “
Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis
,”
Anal. Chem.
80
(
10
),
3699
3707
(
2013
).
51.
Z.
Nie
,
X.
Liu
,
O.
Akbulut
, and
G. M.
Whitesides
, “
Integration of paper-based microfluidic devices with commercial electrochemical readers
,”
Lab Chip
10
,
3163
3169
(
2010
).
52.
A. W.
Martinez
,
S. T.
Phillips
, and
G. M.
Whitesides
, “
Three-dimensional microfluidic devices fabricated in layered paper and tape
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
50
),
19606
19611
(
2008
).
53.
X.
Li
,
K.
Scida
, and
R. M.
Crooks
, “
Detection of hepatitis B virus DNA with a paper electrochemical sensor
,”
Anal. Chem.
87
(
17
),
9009
9015
(
2015
).
54.
D. C.
Duffy
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)
,”
Anal. Chem.
70
(
23
),
4974
4984
(
1998
).
55.
I.
Banerjee
,
T.
Salih
,
H.
Ramachandraiah
,
J.
Erlandsson
,
T.
Pettersson
,
A. C.
Araújo
,
M.
Karlsson
, and
A.
Russom
, “
SlipDisc: A versatile sample preparation platform for point of care diagnostics
,”
RSC Adv.
7
(
56
),
35048
35054
(
2017
).
56.
N. G.
Schoepp
,
T. S.
Schlappi
,
M. S.
Curtis
,
S. S.
Butkovich
,
S.
Miller
,
R. M.
Humphries
, and
R. F.
Ismagilov
, “
Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples
,”
Sci. Transl. Med.
9
(
410
),
eaal3693
(
2017
).
57.
L.
Li
,
M. A.
Karymov
,
K. P.
Nichols
, and
R. F.
Ismagilov
, “
Dead-end filling of SlipChip evaluated theoretically and experimentally as a function of the surface chemistry and the gap size between the plates for lubricated and dry SlipChips
,”
Langmuir
26
(
14
),
12465
12471
(
2010
).
58.
R. R.
Pompano
,
C. E.
Platt
,
M. A.
Karymov
, and
R. F.
Ismagilov
, “
Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip
,”
Langmuir
28
(
3
),
1931
1941
(
2012
).
59.
J.
Rodriguez-Manzano
,
M. A.
Karymov
,
S.
Begolo
,
D. A.
Selck
,
D. V.
Zhukov
,
E.
Jue
, and
R. F.
Ismagilov
, “
Reading out single-molecule digital RNA and DNA isothermal amplification in nanoliter volumes with unmodified camera phones
,”
ACS Nano
10
(
3
),
3102
3113
(
2016
).
60.
Y.
Song
,
Y.
Wang
, and
L.
Qin
, “
A multistage volumetric bar chart chip for visualized quantification of DNA
,”
J. Am. Chem. Soc.
135
(
45
),
16785
16788
(
2013
).
61.
J. F.
Huggett
,
S.
Cowen
, and
C. A.
Foy
, “
Considerations for digital PCR as an accurate molecular diagnostic tool
,”
Clin. Chem.
61
(
1
),
79
88
(
2015
).
62.
C. M.
Hindson
,
J. R.
Chevillet
,
H. A.
Briggs
,
E. N.
Gallichotte
,
I. K.
Ruf
,
B. J.
Hindson
,
R. L.
Vessella
, and
M.
Tewari
, “
Absolute quantification by droplet digital PCR versus analog real-time PCR
,”
Nat. Methods
10
(
10
),
1003
1005
(
2013
).
63.
J.
Kuypers
and
K. R.
Jerome
, “
Applications of digital PCR for clinical microbiology
,”
J. Clin. Microbiol.
55
(
6
),
1621
1628
(
2017
).
64.
P. L.
Quan
,
M.
Sauzade
, and
E.
Brouzes
, “
dPCR: A technology review
,”
Sensors
18
(
4
),
1271
(
2018
).
65.
J.
Hiltunen
,
C.
Liedert
,
M.
Hiltunen
,
O. H.
Huttunen
,
J.
Hiitola-Keinänen
,
S.
Aikio
,
M.
Harjanne
,
M.
Kurkinen
,
L.
Hakalahti
, and
L. P.
Lee
, “
Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification
,”
Lab Chip
18
(
11
),
1552
1559
(
2018
).
66.
J.
Zhang
,
M.
Sahli
,
J. C.
Gelin
, and
T.
Barrière
, “
Roll manufacturing of polymer microfluidic devices using a roll embossing process
,”
Sens. Actuators A Phys.
230
,
156
169
(
2015
).
67.
A.
Bhattacharyya
and
C. M.
Klapperich
, “
Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics
,”
Anal. Chem.
78
(
3
),
788
792
(
2006
).
68.
T. S.
Schlappi
,
S. E.
McCalla
,
N. G.
Schoepp
, and
R. F.
Ismagilov
, “
Flow-through capture and in situ amplification can enable rapid detection of a few single molecules of nucleic acids from several milliliters of solution
,”
Anal. Chem.
88
(
15
),
7647
7653
(
2016
).
You do not currently have access to this content.