Microfluidics is a technique for the handling of small volumes of liquids on the order of picoliters to nanoliters and has impact for miniaturized biomedical science and fundamental research. Because of its multi- and interdisciplinary nature (i.e., combining the fields of biology, chemistry, physics, and engineering), microfluidics offers much potential for educational applications, both at the university level as well as primary and secondary education. Microfluidics is also an ideal “tool” to enthuse and educate members of the general public about the interdisciplinary aspects of modern sciences, including concepts of science, technology, engineering, and mathematics subjects such as (bio)engineering, chemistry, and biomedical sciences. Here, we provide an overview of approaches that have been taken to make microfluidics accessible for formal and informal learning. We also point out future avenues and desired developments. At the extreme ends, we can distinguish between projects that teach how to build microfluidic devices vs projects that make various microscopic phenomena (e.g., low Reynolds number hydrodynamics, microbiology) accessible to learners and the general public. Microfluidics also enables educators to make experiments low-cost and scalable, and thereby widely accessible. Our goal for this review is to assist academic researchers working in the field of microfluidics and lab-on-a-chip technologies as well as educators with translating research from the laboratory into the lecture hall, teaching laboratory, or public sphere.

1.
J. R.
Heath
,
A.
Ribas
, and
P. S.
Mischel
,
Nat. Rev. Drug Discovery
15
,
204
(
2015
).
2.
C.
Gawad
,
W.
Koh
, and
S. R.
Quake
,
Nat. Rev. Genet.
17
,
175
(
2016
).
3.
S. K.
Vashist
,
P. B.
Luppa
,
L. Y.
Yeo
,
A.
Ozcan
, and
J. H. T.
Luong
,
Trends Biotechnol.
33
(
11
),
692
705
(
2015
).
4.
Y.
Fintschenko
,
Lab Chip
11
(
20
),
3394
3400
(
2011
).
5.
C. H.
Legge
,
J. Chem. Educ.
79
(
2
),
173
(
2002
).
6.
G. M.
Whitesides
,
Nature
442
,
368
373
(
2006
).
7.
D. S.
Olsen
,
Spontaneous Generations: J. History Philos. Sci.
4
(
1
),
231
254
(
2010
).
8.
C. M.
Czerniak
and
C. C.
Johnson
,
Handbook Res. Sci. Educ.
2
395
411
(
2014
).
9.
L. R.
Lattuca
,
L. J.
Voigt
, and
K. Q.
Fath
,
Rev. Higher Educ.
28
(
1
),
23
48
(
2004
).
10.
H.
Schweingruber
,
T.
Keller
, and
H.
Quinn
,
A Framework for K-12 Science Education Practices, Crosscutting Concepts, and Core Ideas
(
The National Academies Press
,
Washington, DC
,
2012
).
11.
L. S.
Vygotsky
,
Mind in Society
(
Harvard University Press
,
Cambridge, MA
,
1978
).
12.
M.
Pedaste
,
M.
Mäeots
,
L. A.
Siiman
,
T.
de Jong
,
S. A. N.
van Riesen
,
E. T.
Kamp
,
C. C.
Manoli
,
Z. C.
Zacharia
, and
E.
Tsourlidaki
,
Educ. Res. Rev.
14
,
47
61
(
2015
).
13.
J. A. S.
Morton
and
H.
Bridle
,
Biomicrofluidics
10
(
3
),
034117
(
2016
).
14.
T. W.
Burns
,
D. J.
O’Connor
, and
S. M.
Stocklmayer
,
Public Underst. Sci.
12
(
2
),
183
202
(
2003
).
15.
B.
Fischhoff
,
Proc. Natl. Acad. Sci. U.S.A.
110
(
Suppl. 3
),
14033
14039
(
2013
).
16.
C. E.
Owens
and
A. J.
Hart
,
Lab Chip
18
(
6
),
890
901
(
2018
).
17.
M.
Jimenez
and
H. L.
Bridle
,
Lab Chip
15
(
4
),
947
957
(
2015
).
18.
M. M. N.
Esfahani
,
M. D.
Tarn
,
T. A.
Choudhury
,
L. C.
Hewitt
,
A. J.
Mayo
,
T. A.
Rubin
,
M. R.
Waller
,
M. G.
Christensen
,
A.
Dawson
, and
N.
Pamme
,
Biomicrofluidics
10
(
1
),
011301
(
2016
).
19.
M.
Hemling
,
J. A.
Crooks
,
P. M.
Oliver
,
K.
Brenner
,
J.
Gilbertson
,
G. C.
Lisensky
, and
D. B.
Weibel
,
J. Chem. Educ.
91
(
1
),
112
115
(
2014
).
20.
S.
Lee
and
J.
Wiener
,
J. Chem. Educ.
88
(
2
),
151
157
(
2011
).
21.
P. A. E.
Piunno
,
A.
Zetina
,
N.
Chu
,
A. J.
Tavares
,
M. O.
Noor
,
E.
Petryayeva
,
U.
Uddayasankar
, and
A.
Veglio
,
J. Chem. Educ.
91
(
6
),
902
907
(
2014
).
22.
J. J.
Wietsma
,
J. T.
van der Veen
,
W.
Buesink
,
A.
van den Berg
, and
M.
Odijk
,
J. Chem. Educ.
95
(
2
),
267
275
(
2018
).
23.
D. J.
Harrison
,
K.
Fluri
,
K.
Seiler
,
Z.
Fan
,
C. S.
Effenhauser
, and
A.
Manz
,
Science
261
(
5123
),
895
897
(
1993
).
24.
D. J.
Harrison
,
A.
Manz
,
Z.
Fan
,
H.
Luedi
, and
H. M.
Widmer
,
Anal. Chem.
64
(
17
),
1926
1932
(
1992
).
25.
K.
Ohno
,
K.
Tachikawa
, and
A.
Manz
,
Electrophoresis
29
(
22
),
4443
4453
(
2008
).
26.
S.
Teerasong
and
R. L.
McClain
,
J. Chem. Educ.
88
(
4
),
465
467
(
2011
).
27.
T.-C.
Chao
,
S.
Bhattacharya
, and
A.
Ros
,
J. Chem. Educ.
89
(
1
),
125
129
(
2012
).
28.
B.
Giri
,
R. R.
Peesara
,
N.
Yanagisawa
, and
D.
Dutta
,
J. Chem. Educ.
92
(
4
),
728
732
(
2015
).
29.
L.
Cai
,
Y.
Wu
,
C.
Xu
, and
Z.
Chen
,
J. Chem. Educ.
90
(
2
),
232
234
(
2013
).
30.
Z. V.
Feng
,
K. R.
Edelman
, and
B. P.
Swanson
,
J. Chem. Educ.
92
(
4
),
723
727
(
2015
).
31.
A.
Grimes
,
D. N.
Breslauer
,
M.
Long
,
J.
Pegan
,
L. P.
Lee
, and
M.
Khine
,
Lab Chip
8
(
1
),
170
172
(
2008
).
32.
N.
Emmanuel
,
G.
Emonds-Alt
,
M.
Lismont
,
G.
Eppe
, and
J.-C. M.
Monbaliu
,
J. Chem. Educ.
94
(
6
),
775
780
(
2017
).
33.
T. A.
Davis
,
S. L.
Athey
,
M. L.
Vandevender
,
C. L.
Crihfield
,
C. C. E.
Kolanko
,
S.
Shao
,
M. C. G.
Ellington
,
J. K.
Dicks
,
J. S.
Carver
, and
L. A.
Holland
,
J. Chem. Educ.
92
(
1
),
116
119
(
2015
).
34.
J.
Greener
,
E.
Tumarkin
,
M.
Debono
,
A. P.
Dicks
, and
E.
Kumacheva
,
Lab Chip
12
(
4
),
696
701
(
2012
).
35.
I. H.
Riedel-Kruse
,
A. M.
Chung
,
B.
Dura
,
A. L.
Hamilton
, and
B. C.
Lee
,
Lab Chip
11
(
1
),
14
22
(
2011
).
36.
L.
Gerber
,
H.
Kim
and
I.
Riedel-Kruse
, in
DiGRA/FDG ‘16 - Proceedings of the First International Joint Conference of DiGRA and FDG
(
Dundee
,
Scotland
,
2016
), Vol. 13.
37.
A. C. H.
Tsang
,
A. T.
Lam
, and
I. H.
Riedel-Kruse
,
Nat. Phys.
14
(
12
),
1216
1222
(
2018
).
38.
H.
Kim
,
L. C.
Gerber
,
D.
Chiu
,
S. A.
Lee
,
N. J.
Cira
,
S. Y.
Xia
, and
I. H.
Riedel-Kruse
,
PLoS One
11
(
10
),
e0162602
(
2016
).
39.
S. A.
Lee
,
E.
Bumbacher
,
A. M.
Chung
,
N.
Cira
,
B.
Walker
,
J. Y.
Park
,
B.
Starr
,
P.
Blikstein
, and
I. H.
Riedel-Kruse
, in
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(
ACM
,
Seoul
,
Republic of Korea
,
2015
), pp.
2593
2602
.
40.
S. A.
Lee
,
A. M.
Chung
,
N.
Cira,
and
I. H.
Riedel-Kruse
, in
Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction
(
ACM, Stanford
,
California
,
USA
,
2015
), pp.
273
280
.
41.
N. J.
Cira
,
A. M.
Chung
,
A. K.
Denisin
,
S.
Rensi
,
G. N.
Sanchez
,
S. R.
Quake
, and
I. H.
Riedel-Kruse
,
PLoS Biol.
13
(
3
),
e1002110
(
2015
).
42.
L.
Gerber
,
M. C
Doshi
,
H.
Kim
, and
I.
Riedel-Kruse
, in
DiGRA/FDG ‘16-Proceedings of the First International Joint Conference of DiGRA and FDG
(
Dundee
,
Scotland
,
2016
).
43.
L. C.
Gerber
,
H.
Kim
, and
I. H.
Riedel-Kruse
,
Biomicrofluidics
9
(
6
),
064105
(
2015
).
44.
A. T.
Lam
,
K. G.
Samuel-Gama
,
J.
Griffin
,
M.
Loeun
,
L. C.
Gerber
,
Z.
Hossain
,
N. J.
Cira
,
S. A.
Lee
, and
I. H.
Riedel-Kruse
,
Lab Chip
17
(
8
),
1442
1451
(
2017
).
45.
Z.
Hossain
,
E. W.
Bumbacher
,
A. M.
Chung
,
H.
Kim
,
C.
Litton
,
A. D.
Walter
,
S. N.
Pradhan
,
K.
Jona
,
P.
Blikstein
, and
I. H.
Riedel-Kruse
,
Nat. Biotechnol.
34
,
1293
(
2016
).
46.
Z.
Hossain
,
E.
Bumbacher
,
A.
Brauneis
,
M.
Diaz
,
A.
Saltarelli
,
P.
Blikstein
, and
I. H.
Riedel-Kruse
,
Int. J. Artif. Intell. Educ.
28
(
4
),
478
507
(
2018
).
47.
Z.
Hossain
and
I. H.
Riedel-Kruse
, in
Cyber-Physical Laboratories in Engineering and Science Education
, edited by
M. E.
Auer
,
A. K. M.
Azad
,
A.
Edwards
, and
T.
de Jong
(
Springer International Publishing
,
Cham
,
2018
), pp.
271
304
.
48.
P.
Washington
,
K. G.
Samuel-Gama
,
S.
Goyal
,
A.
Ramaswami
, and
I. H.
Riedel-Kruse
,
Proc. Natl. Acad. Sci. U.S.A.
116
(
12
),
5411
5419
(
2019
).
49.
H.
Harvey
,
M.
Havard
,
D.
Magnus
,
M. K.
Cho
, and
I. H.
Riedel-Kruse
,
Hastings Center Rep.
44
(
6
),
38
46
(
2014
).
50.
M. D.
Stilwell
,
J. F.
Nepper
,
E. D.
Clawson
,
V.
Blair
,
T.
Tangen
, and
D. B.
Weibel
,
Am. Biol. Teach.
79
(
9
),
753
762
(
2017
).
51.
M. G.
Mauk
,
R.
Chiou
,
V.
Genis
,
M. E.
Carr
,
D.
Tadros
, and
C.
Sikich
, in
ASEE Annual Conference and Exposition, Conference Proceedings
(
San Antonio
,
Texas
,
2012
).
52.
Y.-C.
Shen
,
D.
Li
,
A.
Al-Shoaibi
,
T.
Bersano-Begey
,
H.
Chen
,
S.
Ali
,
B.
Flak
,
C.
Perrin
,
M.
Winslow
,
H.
Shah
,
P.
Ramamurthy
,
R. H.
Schmedlen
,
S.
Takayama
, and
K. F.
Barald
,
Zebrafish
6
(
2
),
201
213
(
2009
).
53.
A.
Priye
,
Y. A.
Hassan
, and
V. M.
Ugaz
,
Lab Chip
12
(
23
),
4946
4954
(
2012
).
54.
C. D.
Smolke
,
Nat. Biotechnol.
27
,
1099
(
2009
).
55.
R.
Kelwick
,
L.
Bowater
,
K. H.
Yeoman
, and
R. P.
Bowater
,
FEMS Microbiol. Lett.
362
(
16
), fnv129 (
2015
).
56.
iGEM Team list for all years, see https://igem.org/Team_List?year=all; accessed 21 May 2019.
57.
H.
Bridle
,
J.
Morton
,
P.
Cameron
,
M. P. Y.
Desmulliez
, and
M.
Kersaudy-Kerhoas
,
Microfluid. Nanofluidics
20
(
7
),
103
(
2016
).
58.
L. L.
Christensen
,
The Hands-on Guide for Science Communicators: A Step-by-Step Approach to Public Outreach
(
Springer Science & Business Media
,
2007
).
59.
J.
Varner
,
BioScience
64
(
4
),
333
340
(
2014
).
60.
Chemical and Biological Microsystems Society
, see https://cbmsociety.org/outreach; accessed 7 May 2019.
61.
C. W. T.
Yang
,
E.
Ouellet
, and
E. T.
Lagally
,
Anal. Chem.
82
(
13
),
5408
5414
(
2010
).
62.
D.
Bardin
and
A. P.
Lee
,
Lab Chip
14
(
20
),
3978
3986
(
2014
).
63.
R. R.
Ravgiala
,
S.
Weisburd
,
R.
Sleeper
,
A.
Martinez
,
D.
Rozkiewicz
,
G. M.
Whitesides
, and
K. A.
Hollar
,
J. Chem. Educ.
91
(
1
),
107
111
(
2014
).
64.
M. T.
Koesdjojo
,
S.
Pengpumkiat
,
Y.
Wu
,
A.
Boonloed
,
D.
Huynh
,
T. P.
Remcho
, and
V. T.
Remcho
,
J. Chem. Educ.
92
(
4
),
737
741
(
2015
).
65.
N.
Ohmura
,
K.
Kataoka
,
Y.
Shibata
, and
T.
Makino
,
Chem. Eng. Sci.
52
(
11
),
1757
1765
(
1997
).
66.
J. M.
Piau
,
M.
Bremond
,
J. M.
Couette
, and
M.
Piau
,
Rheol. Acta
33
(
5
),
357
368
(
1994
).
67.
N.
Li Jeon
,
H.
Baskaran
,
S. K. W.
Dertinger
,
G. M.
Whitesides
,
L.
Van De Water
, and
M.
Toner
,
Nat. Biotechnol.
20
,
826
(
2002
).
68.
J. L.
Osborn
,
B.
Lutz
,
E.
Fu
,
P.
Kauffman
,
D. Y.
Stevens
, and
P.
Yager
,
Lab Chip
10
(
20
),
2659
2665
(
2010
).
69.
L.
Shang
,
Y.
Cheng
, and
Y.
Zhao
,
Chem. Rev.
117
(
12
),
7964
8040
(
2017
).
70.
M. S.
Bhamla
,
B.
Benson
,
C.
Chai
,
G.
Katsikis
,
A.
Johri
, and
M.
Prakash
,
Nat. Biomed. Eng.
1
,
0009
(
2017
).
71.
R.
Fobel
,
C.
Fobel
, and
A. R.
Wheeler
,
Appl. Phys. Lett.
102
(
19
),
193513
(
2013
).
72.
D.
Di Carlo
,
L. Y.
Wu
, and
L. P.
Lee
,
Lab Chip
6
(
11
),
1445
1449
(
2006
).
73.
M.
Tarn
,
S.
Peyman
,
C.
Corlyon
,
H.
Momtazian
,
J.
Smith
,
M.
Spencer
,
S.
Taylor
,
M.
Lorch
, and
N.
Pamme
,
paper presented at the Proceedings of 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences,
μTAS
,
Dublin
,
Ireland
,
2016
.
74.
D.
Nguyen
,
J.
McLane
,
V.
Lew
,
J.
Pegan
, and
M.
Khine
,
Biomicrofluidics
5
(
2
),
022209
(
2011
).
75.
D.
Nguyen
,
D.
Taylor
,
K.
Qian
,
N.
Norouzi
,
J.
Rasmussen
,
S.
Botzet
,
M.
Lehmann
,
K.
Halverson
, and
M.
Khine
,
Lab Chip
10
(
12
),
1623
1626
(
2010
).
76.
C.-S.
Chen
,
D. N.
Breslauer
,
J. I.
Luna
,
A.
Grimes
,
W.-c.
Chin
,
L. P.
Lee
, and
M.
Khine
,
Lab Chip
8
(
4
),
622
624
(
2008
).
77.
D. A.
Bartholomeusz
,
R. W.
Boutte
, and
J. D.
Andrade
,
J. Microelectromech. Syst.
14
(
6
),
1364
1374
(
2005
).
78.
M.
Islam
,
R.
Natu
, and
R.
Martinez-Duarte
,
Microfluid. Nanofluidics
19
(
4
),
973
985
(
2015
).
79.
P. K.
Yuen
and
V. N.
Goral
,
Lab Chip
10
(
3
),
384
387
(
2010
).
80.
L. E.
Stallcop
,
Y. R.
Álvarez-García
,
A. M.
Reyes-Ramos
,
K. P.
Ramos-Cruz
,
M. M.
Morgan
,
Y.
Shi
,
L.
Li
,
D. J.
Beebe
,
M.
Domenech
, and
J. W.
Warrick
,
Lab Chip
18
(
3
),
451
462
(
2018
).
81.
C.
Lucio do Lago
,
H. D.
Torres da Silva
,
C. A.
Neves
,
J. G.
Alves Brito-Neto
, and
J. A.
Fracassi da Silva
,
Anal. Chem.
75
(
15
),
3853
3858
(
2003
).
82.
B. L.
Thompson
,
Y.
Ouyang
,
G. R. M.
Duarte
,
E.
Carrilho
,
S. T.
Krauss
, and
J. P.
Landers
,
Nat. Protoc.
10
,
875
886
(
2015
).
83.
Y.
Ouyang
,
G. R. M.
Duarte
,
B. L.
Poe
,
P. S.
Riehl
,
F. M.
dos Santos
,
C. C. G.
Martin-Didonet
,
E.
Carrilho
, and
J. P.
Landers
,
Anal. Chim. Acta
901
,
59
67
(
2015
).
84.
G.
Comina
,
A.
Suska
, and
D.
Filippini
,
Lab Chip
14
(
2
),
424
430
(
2014
).
85.
H. N.
Chan
,
Y.
Chen
,
Y.
Shu
,
Y.
Chen
,
Q.
Tian
, and
H.
Wu
,
Microfluid. Nanofluidics
19
(
1
),
9
18
(
2015
).
86.
Y.
Hwang
,
O. H.
Paydar
, and
R. N.
Candler
,
Sens. Actuators A
226
,
137
142
(
2015
).
87.
V.
Saggiomo
and
A. H.
Velders
,
Adv. Sci.
2
(
9
),
1500125
(
2015
).
88.
N.
Jing
,
G.
Qing
,
Q.
Jing-jiang
,
S.
Miao
,
L.
An
,
S.
Lei
,
F.
Jian-zhong
,
Z.
Peng
, and
H.
Yong
,
Biofabrication
10
(
3
),
035001
(
2018
).
89.
A. J. L.
Morgan
,
L.
Hidalgo San Jose
,
W. D.
Jamieson
,
J. M.
Wymant
,
B.
Song
,
P.
Stephens
,
D. A.
Barrow
, and
O. K.
Castell
,
PLoS One
11
(
4
),
e0152023
(
2016
).
90.
K. C.
Bhargava
,
B.
Thompson
, and
N.
Malmstadt
,
Proc. Natl. Acad. Sci. U.S.A.
111
(
42
),
15013
15018
(
2014
).
91.
P. K.
Yuen
,
Lab Chip
8
(
8
),
1374
1378
(
2008
).
92.
P. K.
Yuen
,
Lab Chip
16
(
19
),
3700
3707
(
2016
).
93.
A. W.
Martinez
,
S. T.
Phillips
,
M. J.
Butte
, and
G. M.
Whitesides
,
Angew. Chem. Int. Ed.
46
(
8
),
1318
1320
(
2007
).
94.
E.
Carrilho
,
A. W.
Martinez
, and
G. M.
Whitesides
,
Anal. Chem.
81
(
16
),
7091
7095
(
2009
).
95.
D. M.
Cate
,
J. A.
Adkins
,
J.
Mettakoonpitak
, and
C. S.
Henry
,
Anal. Chem.
87
(
1
),
19
41
(
2015
).
96.
E.
Fu
,
T.
Liang
,
P.
Spicar-Mihalic
,
J.
Houghtaling
,
S.
Ramachandran
, and
P.
Yager
,
Anal. Chem.
84
(
10
),
4574
4579
(
2012
).
97.
J.
Nie
,
Y.
Zhang
,
L.
Lin
,
C.
Zhou
,
S.
Li
,
L.
Zhang
, and
J.
Li
,
Anal. Chem.
84
(
15
),
6331
6335
(
2012
).
98.
8-bit Frogger game on a digital microfluidics device, see https://blog.arduino.cc/2017/01/29/8-bit-frogger-game-on-a-digital-microfluidics-device/; accessed 11 March 2019.
99.
R.
Fobel
,
A. E.
Kirby
,
A. H. C.
Ng
,
R. R.
Farnood
, and
A. R.
Wheeler
,
Adv. Mater.
26
(
18
),
2838
2843
(
2014
).
100.
C.
Dixon
,
A. H. C.
Ng
,
R.
Fobel
,
M. B.
Miltenburg
, and
A. R.
Wheeler
,
Lab Chip
16
(
23
),
4560
4568
(
2016
).
101.
A. H. C.
Ng
,
R.
Fobel
,
C.
Fobel
,
J.
Lamanna
,
D. G.
Rackus
,
A.
Summers
,
C.
Dixon
,
M. D. M.
Dryden
,
C.
Lam
,
M.
Ho
,
N. S.
Mufti
,
V.
Lee
,
M. A. M.
Asri
,
E. A.
Sykes
,
M. D.
Chamberlain
,
R.
Joseph
,
M.
Ope
,
H. M.
Scobie
,
A.
Knipes
,
P. A.
Rota
,
N.
Marano
,
P. M.
Chege
,
M.
Njuguna
,
R.
Nzunza
,
N.
Kisangau
,
J.
Kiogora
,
M.
Karuingi
,
J. W.
Burton
,
P.
Borus
,
E.
Lam
, and
A. R.
Wheeler
,
Sci. Transl. Med.
10
(
438
),
eaar6076
(
2018
).
102.
M.
Alistar
and
U.
Gaudenz
,
Bioengineering
4
(
2
),
45
(
2017
).
103.
K.
Choi
,
A. H. C.
Ng
,
R.
Fobel
, and
A. R.
Wheeler
,
Annu. Rev. Anal. Chem.
5
(
1
),
413
440
(
2012
).
104.
M. W. L.
Watson
,
M.
Abdelgawad
,
G.
Ye
,
N.
Yonson
,
J.
Trottier
, and
A. R.
Wheeler
,
Anal. Chem.
78
(
22
),
7877
7885
(
2006
).
105.
M.
Abdelgawad
and
A. R.
Wheeler
,
Adv. Mater.
19
(
1
),
133
137
(
2007
).
106.
M.
Abdelgawad
and
A. R.
Wheeler
,
Microfluid. Nanofluidics
4
(
4
),
349
(
2007
).
107.
M. D. M.
Dryden
,
D. D. G.
Rackus
,
M. H.
Shamsi
, and
A. R.
Wheeler
,
Anal. Chem.
85
(
18
),
8809
8816
(
2013
).
108.
Y.
Yu
,
J.
Chen
,
J.
Li
,
S.
Yang
,
S.-K.
Fan
, and
J.
Zhou
,
J. Micromech. Microeng.
23
(
9
),
095025
(
2013
).
109.
M.
Yafia
,
S.
Shukla
, and
H.
Najjaran
,
J. Micromech. Microeng.
25
(
5
),
057001
(
2015
).
110.
K. W.
Oh
,
K.
Lee
,
B.
Ahn
, and
E. P.
Furlani
,
Lab Chip
12
(
3
),
515
545
(
2012
).
111.
D. S.
Kong
,
T. A.
Thorsen
,
J.
Babb
,
S. T.
Wick
,
J. J.
Gam
,
R.
Weiss
, and
P. A.
Carr
,
Nat. Biotechnol.
35
,
523
(
2017
).
You do not currently have access to this content.