Microbubbles are often used in chemistry, biophysics, and medicine. Properly controlled microbubbles have been proved beneficial for various applications by previous scientific endeavors. However, there is still a plenty of room for further development of efficient microbubble handling methods. Here, this paper introduces a tunable, stable, and robust microbubble interface handling mechanism, named as microfluidic standing air bubbles (μSABs), by studying the multiphysical phenomena behind the gas–liquid interface formation and variation. A basic μSAB system consists specially structured fluidic channels, pneumatic channels, and selectively permeable porous barriers between them. The μSABs originate inside the crevice structures on the fluidic channel walls in a repeatable and robust manner. The volumetric variation of the μSAB is a multiphysical phenomenon that dominated by the air diffusion between the pneumatic channel and the bubble. Theoretical analysis and experimental data illustrate the coupling processes of the repeatable and linear μSAB volumetric variation when operated under common handling conditions (control pneumatic pressure: −90 kPa to 200 kPa). Furthermore, an adjustable acoustic microstreaming is demonstrated as an application using the alterable μSAB gas–liquid interface. Derived equations and microscopic observations elucidate the mechanism of the continuous and linear regulation of the acoustic microstreaming using varying μSAB gas–liquid interfaces. The μSAB system provides a new tool to handle the flexible and controllable gas–liquid interfaces in a repeatable and robust manner, which makes it a promising candidate for innovative biochemical, biophysical, and medical applications.

1.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
,
Nature
507
(
7491
),
181
189
(
2014
).
2.
G. M.
Whitesides
,
Nature
442
(
7101
),
368
373
(
2006
).
3.
P.
Garstecki
,
M. J.
Fuerstman
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
6
(
3
),
437
446
(
2006
).
4.
T.
Fu
,
Y.
Ma
,
D.
Funfschilling
, and
H. Z.
Li
,
Chem. Eng. Sci.
64
(
10
),
2392
2400
(
2009
).
5.
C.-L.
Zhang
,
Y.-Q.
Wang
,
Y.
Gong
,
Y.
Wu
,
G.-D.
Peng
, and
Y.-J.
Rao
,
J. Lightwave Technol.
36
(
12
),
2492
2498
(
2018
).
6.
B. M.
Borkent
,
S.
Gekle
,
A.
Prosperetti
, and
D.
Lohse
,
Phys Fluids
21
(
10
),
102003
(
2009
).
7.
J.
Zhao
and
Z.
You
,
Cytometry A
93
(
2
),
222
231
(
2018
).
8.
C.-M.
Cheng
and
C.-H.
Liu
,
J. Microelectromech. Syst.
15
(
2
),
296
307
(
2006
).
9.
Z. Z.
Chong
,
S. B.
Tor
,
N. H.
Loh
,
T. N.
Wong
,
A. M.
Ganan-Calvo
,
S. H.
Tan
, and
N. T.
Nguyen
,
Lab Chip
15
(
4
),
996
999
(
2015
).
10.
Y.
Hong
,
N.
Ashgriz
,
J.
Andrews
, and
H.
Parizi
,
J. Microelectromech. Syst.
13
(
5
),
857
869
(
2004
).
11.
A.
Salari
,
V.
Gnyawali
,
I. M.
Griffiths
,
R.
Karshafian
,
M. C.
Kolios
, and
S. S. H.
Tsai
,
Soft Matter
13
(
46
),
8796
8806
(
2017
).
12.
M.
Lee
,
E. Y.
Lee
,
D.
Lee
, and
B. J.
Park
,
Soft Matter
11
(
11
),
2067
2079
(
2015
).
13.
C.
Walsh
,
N.
Ovenden
,
E.
Stride
, and
U.
Cheema
,
Sci. Rep.
7
(
1
),
6331
(
2017
).
14.
A.
Oskooei
,
M.
Abolhasani
, and
A.
Gunther
,
Lab Chip
13
(
13
),
2519
2527
(
2013
).
15.
K.
Khoshmanesh
,
A.
Almansouri
,
H.
Albloushi
,
P.
Yi
,
R.
Soffe
, and
K.
Kalantar-Zadeh
,
Sci. Rep.
5
,
9942
(
2015
).
16.
Y.
Xu
,
Y.
Lv
,
L.
Wang
,
W.
Xing
, and
J.
Cheng
,
Biosens. Bioelectron.
32
(
1
),
300
304
(
2012
).
17.
J. J. M.
Cornejo
,
E.
Matsuoka
, and
H.
Daiguji
,
Soft Matter
7
(
5
),
1897
1902
(
2011
).
18.
A.
Tomak
and
H. M.
Zareie
,
RSC Adv.
5
(
49
),
38842
38845
(
2015
).
19.
A.
Darabi
,
P. G.
Jessop
, and
M. F.
Cunningham
,
Chem. Soc. Rev.
45
(
15
),
4391
4436
(
2016
).
20.
Y.
Inatsu
,
T.
Kitagawa
,
N.
Nakamura
,
S.
Kawasaki
,
D.
Nei
,
M. L.
Bari
, and
S.
Kawamoto
,
Food Sci. Technol. Res.
17
(
6
),
479
485
(
2011
).
21.
S. V.
Bortkevitch
,
S. A.
Kostrov
,
N. V.
Savitsky
and
W. O.
Wooden
, “
Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
.” U.S. Patent 7,059,591 (June 13, 2006).
22.
J.
Liu
,
S.
Li
, and
D.
Mitra
,
Int. J. Heat Mass Transf.
91
,
611
618
(
2015
).
23.
J.
Liu
,
D.
Mitra
,
J. R.
Waldeisen
,
R. H.
Henrikson
,
Y.
Park
,
S.
Li
, and
L. P.
Lee
, presented at the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, Germany, MicroTAS, 27–31 October 2013.
24.
C.
Lochovsky
,
S.
Yasotharan
, and
A.
Gunther
,
Lab Chip
12
(
3
),
595
601
(
2012
).
25.
H.-B.
Cheng
and
Y.-W.
Lu
,
Microfluid. Nanofluid.
17
(
5
),
855
862
(
2014
).
26.
Y. J.
Kang
,
E.
Yeom
,
E.
Seo
, and
S. J.
Lee
,
Biomicrofluidics
8
(
1
),
014102
(
2014
).
27.
J.
Xu
,
X.
Lv
,
Y.
Wei
,
L.
Zhang
,
R.
Li
,
Y.
Deng
, and
X.
Xu
,
Sens. Actuators B
212
,
472
480
(
2015
).
28.
W. F.
Zheng
,
Z.
Wang
,
W.
Zhang
, and
X. Y.
Jiang
,
Lab Chip
10
(
21
),
2906
2910
(
2010
).
29.
T.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
2012
).
30.
A. A.
Atchley
and
A.
Prosperetti
,
J. Acoust. Soc. Am.
86
(
3
),
1065
1084
(
1989
).
31.
E. N.
Harvey
,
A.
Whiteley
,
W.
McElroy
,
D.
Pease
, and
D.
Barnes
,
J. Cell. Comp. Physiol.
24
(
1
),
23
34
(
1944
).
32.
H. T.
Kim
,
H.
Bae
,
Z.
Zhang
,
A.
Kusimo
, and
M.
Yu
,
Biomicrofluidics
8
(
5
),
054126
(
2014
).
33.
E.
Karatay
,
P. A.
Tsai
, and
R. G. H.
Lammertink
,
Soft Matter
9
(
46
),
11098
11106
(
2013
).
34.
N.
Garg
,
T. M.
Westerhof
,
V.
Liu
,
R.
Liu
,
E. L.
Nelson
, and
A. P.
Lee
,
Microsyst. Nanoeng.
4
,
17085
(
2018
).
35.
D.
Ahmed
,
H. S.
Muddana
,
M.
Lu
,
J. B.
French
,
A.
Ozcelik
,
Y.
Fang
,
P. J.
Butler
,
S. J.
Benkovic
,
A.
Manz
, and
T. J.
Huang
,
Anal. Chem.
86
(
23
),
11803
11810
(
2014
).
36.
D.
Ahmed
,
A.
Ozcelik
,
N.
Bojanala
,
N.
Nama
,
A.
Upadhyay
,
Y.
Chen
,
W.
Hanna-Rose
, and
T. J.
Huang
,
Nat. Commun.
7
,
11085
(
2016
).
37.
C.
Wang
,
S. V.
Jalikop
, and
S.
Hilgenfeldt
,
Biomicrofluidics
6
(
1
),
012801
012811
(
2012
).
38.
S.
Yazdi
and
A. M.
Ardekani
,
Biomicrofluidics
6
(
4
),
044114
(
2012
).
39.
J.
Collis
,
R.
Manasseh
,
P.
Liovic
,
P.
Tho
,
A.
Ooi
,
K.
Petkovic-Duran
, and
Y.
Zhu
,
Ultrasonics
50
(
2
),
273
279
(
2010
).
40.
H.
Chen
,
Y.
Gao
,
K.
Petkovic
,
S.
Yan
,
M.
Best
,
Y.
Du
, and
Y.
Zhu
,
Microfluid. Nanofluid.
21
(
3
),
30
(
2017
).
41.
A.
Volk
,
M.
Rossi
,
C. J.
Kahler
,
S.
Hilgenfeldt
, and
A.
Marin
,
Lab Chip
15
(
24
),
4607
4613
(
2015
).
42.
J.
Xu
and
D.
Attinger
,
J. Micromech. Microeng.
17
(
3
),
609
(
2007
).
43.
K.
Haubert
,
T.
Drier
, and
D.
Beebe
,
Lab Chip
6
(
12
),
1548
1549
(
2006
).
44.
L.
Xu
,
H.
Lee
,
D.
Jetta
, and
K. W.
Oh
,
Lab Chip
15
(
20
),
3962
3979
(
2015
).
45.
H.
Carslaw
and
J.
Jaeger
,
Conduction of Heat in Solids
(
Clarendon Press
,
Oxford
,
1959
).
46.
L.
Shui
,
J. C.
Eijkel
, and
A.
van den Berg
,
Adv. Colloid Interface Sci.
133
(
1
),
35
49
(
2007
).
47.
P.
Tho
,
R.
Manasseh
, and
A.
Ooi
,
J. Fluid Mech.
576
,
191
233
(
2007
).
48.
A.
Ozcelik
,
J.
Rufo
,
F.
Guo
,
Y.
Gu
,
P.
Li
,
J.
Lata
, and
T. J.
Huang
,
Nat. Methods
15
(
12
),
1021
1028
(
2018
).
49.
Y.
Chen
and
S.
Lee
,
Integr. Comp. Biol.
54
(
6
),
959
968
(
2014
).
50.
D. L.
Miller
,
J. Acoust. Soc. Am.
84
(
4
),
1378
1387
(
1988
).
51.
H.
Bruus
,
Lab Chip
12
(
6
),
1014
1021
(
2012
).
52.
Y.
Xie
,
D.
Ahmed
,
M. I.
Lapsley
,
M.
Lu
,
S.
Li
, and
T. J.
Huang
,
J. Lab. Autom.
19
(
2
),
137
143
(
2014
).

Supplementary Material

You do not currently have access to this content.