Encapsulation of microparticles in droplets has profound applications in biochemical assays. We investigate encapsulation of rigid particles (polystyrene beads) and deformable particles (biological cells) inside aqueous droplets in various droplet generation regimes, namely, squeezing, dripping, and jetting. Our study reveals that the size of the positive (particle-encapsulating) droplets is larger or smaller compared to that of the negative (empty) droplets in the dripping and jetting regimes but no size contrast is observed in the squeezing regime. The size contrast of the positive and negative droplets in the different regimes is characterized in terms of capillary number Ca and stream width ratio ω (i.e., ratio of stream width at the throat to particle diameter ω=w/dp). While for deformable particles, the positive droplets are always larger compared to the negative droplets, for rigid particles, the positive droplets are larger in the dripping and jetting regimes for 0.50ω0.80 but smaller in the jetting regime for ω<0.50. We exploit the size contrast of positive and negative droplets for sorting across the fluid–fluid interface based on noninertial lift force (at Re1), which is a strong function of droplet size. We demonstrate sorting of the positive droplets encapsulating polystyrene beads and biological cells from the negative droplets with an efficiency of ∼95% and purity of ∼65%. The proposed study will find relevance in single-cell studies, where positive droplets need to be isolated from the empty droplets prior to downstream processing.

1.
A.
Kang
,
J.
Park
,
J.
Ju
,
G. S.
Jeong
, and
S. H.
Lee
,
Biomaterials
35
,
2651
2663
(
2014
).
2.
D.
Hümmer
,
F.
Kurth
,
N.
Naredi-Rainer
, and
P. S.
Dittrich
,
Lab Chip
16
,
447
458
(
2015
).
3.
D.
Anselmetti
,
Single Cell Analysis, Technologies and Applications
(
Wiley-VCH
,
Weinheim
,
2009
).
4.
D. J.
Collins
,
A.
Neild
,
A.
DeMello
,
A.-Q.
Liu
, and
Y.
Ai
,
Lab Chip
15
,
3439
3459
(
2015
).
5.
A. R.
Abate
,
C.-H.
Chen
,
J. J.
Agresti
, and
D. A.
Weitz
,
Lab Chip
9
,
2628
(
2009
).
6.
J. F.
Edd
,
D.
Di Carlo
,
K. J.
Humphry
,
S.
Köster
,
D.
Irimia
,
D. A.
Weitz
, and
M.
Toner
,
Lab Chip
8
,
1262
1264
(
2008
).
7.
E. W. M.
Kemna
,
R. M.
Schoeman
,
F.
Wolbers
,
I.
Vermes
,
D. A.
Weitz
, and
A.
van den Berg
,
Lab Chip
12
,
2881
(
2012
).
8.
T. P.
Lagus
and
J. F.
Edd
,
RSC Adv.
3
,
20512
(
2013
).
9.
G.
Kamalakshakurup
and
A.
Lee
,
Lab Chip
17
,
4324
4333
(
2017
).
10.
M.
He
,
J. S.
Edgar
,
G. D. M.
Jeffries
,
R. M.
Lorenz
,
J. P.
Shelby
, and
D. T.
Chiu
,
Anal. Chem.
77
,
1539
1544
(
2005
).
11.
J.
Schoendube
,
D.
Wright
,
R.
Zengerle
, and
P.
Koltay
,
Biomicrofluidics
9
,
1
10
(
2015
).
12.
M.
Chabert
and
J.-L.
Viovy
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
3191
3196
(
2008
).
13.
H. N.
Joensson
,
M.
Uhlén
, and
H. A.
Svahn
,
Lab Chip
11
,
1305
1310
(
2011
).
14.
T.
Jing
,
R.
Ramji
,
M. E.
Warkiani
,
J.
Han
,
C. T.
Lim
, and
C. H.
Chen
,
Biosens. Bioelectron.
66
,
19
23
(
2015
).
15.
E.
Um
,
S. G.
Lee
, and
J. K.
Park
,
Appl. Phys. Lett.
97
, 153703 (
2010
).
16.
J.-C.
Baret
,
O. J.
Miller
,
V.
Taly
,
M.
Ryckelynck
,
A.
El-Harrak
,
L.
Frenz
,
C.
Rick
,
M. L.
Samuels
,
J. B.
Hutchison
,
J. J.
Agresti
,
D. R.
Link
,
D. A.
Weitz
, and
A. D.
Griffiths
,
Lab Chip
9
,
1850
1858
(
2009
).
17.
L.
Schmid
,
D. A.
Weitz
, and
T.
Franke
,
Lab Chip
14
,
3710
3718
(
2014
).
18.
A.
Yusof
,
H.
Keegan
,
C. D.
Spillane
,
O. M.
Sheils
,
C. M.
Martin
,
J. J.
O’Leary
,
R.
Zengerle
, and
P.
Koltay
,
Lab Chip
11
,
2447
2454
(
2011
).
19.
A.
Gross
,
J.
Schöndube
,
S.
Niekrawitz
,
W.
Streule
,
L.
Riegger
,
R.
Zengerle
, and
P.
Koltay
,
J. Lab. Autom.
18
,
504
518
(
2013
).
20.
I.
Leibacher
,
J.
Schoendube
,
J.
Dual
,
R.
Zengerle
, and
P.
Koltay
,
Biomicrofluidics
9
,
1
11
(
2015
).
21.
J.
Nam
,
H.
Lim
,
C.
Kim
,
J.
Yoon Kang
, and
S.
Shin
,
Biomicrofluidics
6
, 024120 (
2012
).
22.
K. S.
Jayaprakash
,
U.
Banerjee
, and
A. K.
Sen
,
Langmuir
32
,
2136
2143
(
2016
).
23.
K. S.
Jayaprakash
,
U.
Banerjee
, and
A. K.
Sen
,
J. Colloid Interface Sci.
493
,
317
326
(
2017
).
24.
H.
Huang
and
X.
He
,
Appl. Phys. Lett.
105
,
143704
(
2014
).
25.
P.
Olla
,
J. Phys. II France
7
,
1533
1540
(
1997
).
26.
M.
Abkarian
and
A.
Viallat
,
Biophys. J.
89
,
1055
1066
(
2005
).
27.
M.
Abkarian
and
A.
Viallat
,
Soft Matter
4
,
653
657
(
2008
).
28.
G.
Coupier
,
B.
Kaoui
,
T.
Podgorski
, and
C.
Misbah
,
Phys. Fluids
20
,
111702
(
2008
).
29.
L. G.
Leal
,
Annu. Rev. Fluid Mech.
12
,
435
476
(
1980
).
30.
M.
Abkarian
,
C.
Lartigue
, and
A.
Viallat
,
Phys. Rev. Lett.
88
,
1
4
(
2002
).
31.
K. S.
Jayaprakash
and
A. K.
Sen
,
Soft Matter
14
,
725
733
(
2018
).
32.
P.
Sajeesh
,
M.
Doble
, and
A. K.
Sen
,
Biomicrofluidics
8
,
054112
(
2014
).
33.
J. K.
Spelt
,
D. R.
Absolom
,
W.
Zingg
,
C. J.
van Oss
, and
A. W.
Neumann
,
Cell Biophys.
4
,
117
131
(
1982
).

Supplementary Material

You do not currently have access to this content.