Microfluidic acoustophoresis is a label-free technique that isolates a purified product from a complex mixture of cells. This technique is well-studied but thus far has lacked the throughput and device manufacturability needed for many medical and industrial uses. Scale-up of acoustofluidic devices can be more challenging than in other microfluidic systems because the channel walls are integral to the resonant behavior and coupling to neighboring channels can inhibit performance. Additionally, the increased device area needed for parallel channels becomes less practical in the silicon or glass materials usually used for acoustofluidic devices. Here, we report an acoustic separator with 12 parallel channels made entirely from polystyrene that achieves blood cell separation at a flow rate greater than 1 ml/min. We discuss the design and optimization of the device and the electrical drive parameters and compare the separation performance using channels of two different designs. To demonstrate the utility of the device, we test its ability to purify lymphocytes from apheresis product, a process that is critical to new immunotherapies used to treat blood cancers. We process a leukapheresis sample with a volume greater than 100 ml in less than 2 h in a single pass without interruption, achieving greater than 90% purity of lymphocytes, without any prepurification steps. These advances suggest that acoustophoresis could in the future aid in cell therapy bioprocessing and that further scale-up is possible.

1.
J. J.
Hawkes
,
R. W.
Barber
,
D. R.
Emerson
, and
W. T.
Coakley
,
Lab Chip
4
,
446
(
2004
).
2.
F.
Petersson
,
A.
Nilsson
,
C.
Holm
,
H.
Jonsson
, and
T.
Laurell
,
Analyst
129
,
938
(
2004
).
3.
D.
Carugo
,
T.
Octon
,
W.
Messaoudi
,
A. L.
Fisher
,
M.
Carboni
,
N. R.
Harris
,
M.
Hill
, and
P.
Glynne-Jones
,
Lab Chip
14
,
3830
(
2014
).
4.
I.
Leibacher
,
S.
Schatzer
, and
J.
Dual
,
Lab Chip
14
,
463
(
2014
).
5.
M.
Evander
,
L.
Johansson
,
T.
Lilliehorn
,
J.
Piskur
,
M.
Lindvall
,
S.
Johansson
,
M.
Almqvist
,
T.
Laurell
, and
J.
Nilsson
,
Anal. Chem.
79
,
2984
(
2007
).
6.
J.
Hultstrom
,
O.
Manneberg
,
K.
Dopf
,
H. M.
Hertz
,
H.
Brismar
, and
M.
Wiklund
,
Ultrasound Med. Biol.
33
,
145
(
2007
).
7.
I.
Iranmanesh
,
H.
Ramachandraiah
,
A.
Russom
, and
M.
Wiklund
,
RSC Adv.
5
,
74304
(
2015
).
8.
N.
Garg
,
T. M.
Westerhof
,
V.
Liu
,
R.
Liu
,
E. L.
Nelson
, and
A. P.
Lee
,
Microsyst. Nanoeng.
4
,
17085
(
2018
).
9.
J.
Shi
,
X.
Mao
,
D.
Ahmed
,
A.
Colletti
, and
T. J.
Huang
,
Lab Chip
8
,
221
(
2008
).
10.
D. J.
Collins
,
B.
Morahan
,
J.
Garcia-Bustos
,
C.
Doerig
,
M.
Plebanski
, and
A.
Neild
,
Nat. Commun.
6
,
8686
(
2015
).
11.
M.
Wu
,
Y.
Ouyang
,
Z.
Wang
,
R.
Zhang
,
P.-H.
Huang
,
C.
Chen
,
H.
Li
,
P.
Li
,
D.
Quinn
,
M.
Dao
,
S.
Suresh
,
Y.
Sadovsky
, and
T. J.
Huang
,
Proc. Natl. Acad. Sci.
114
,
10584
10589
(
2017
).
12.
R. J.
Townsend
,
M.
Hill
,
N. R.
Harris
, and
N. M.
White
,
Ultrasonics
42
,
319
(
2004
).
13.
P.
Augustsson
,
R.
Barnkob
,
S. T.
Wereley
,
H.
Bruus
, and
T.
Laurell
,
Lab Chip
11
,
4152
(
2011
).
14.
S. M.
Hagsater
,
T. G.
Jensen
,
H.
Bruus
, and
J. P.
Kutter
,
Lab Chip
7
,
1336
(
2007
).
15.
R.
Barnkob
,
P.
Augustsson
,
C.
Grenvall
,
T.
Deierborg
,
P.
Brundin
,
H.
Bruus
, and
T.
Laurell
, in Proceedings of 14th MicroTAS 2010 (Chemical and Biological Microsystems Society, 2010), pp. 1337–1339.
16.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
,
Lab Chip
10
,
563
(
2010
).
17.
P.
Augustsson
,
J. T.
Karlsen
,
H. W.
Su
,
H.
Bruus
, and
J.
Voldman
,
Nat. Commun.
7
,
11556
(
2016
).
18.
A. D.
Fesnak
,
P. J.
Hanley
, and
B. L.
Levine
,
Curr. Hematol. Malig. Rep.
12
,
335
(
2017
).
19.
M.
Sadelain
,
I.
Riviere
, and
S.
Riddell
,
Nature
545
,
423
(
2017
).
20.
M.
Settnes
and
H.
Bruus
,
Phys. Rev. E
85
,
016327
(
2012
).
21.
R.
Barnkob
and
H.
Bruus
,
Proc. Meet. Acoust.
6
,
020001
(
2009
).
22.
C.
Lissandrello
,
R.
Dubay
,
K. T.
Kotz
, and
J.
Fiering
,
SLAS Technol.
23
,
352
(
2018
).
23.
A.
Mueller
,
A.
Lever
,
T. V.
Nguyen
,
J.
Comolli
, and
J.
Fiering
,
J. Micromech. Microeng.
23
,
125006
(
2013
).
24.
R.
Silva
,
P.
Dow
,
R.
Dubay
,
C.
Lissandrello
,
J.
Holder
,
D.
Densmore
, and
J.
Fiering
,
Biomed. Microdevices
19
,
70
(
2017
).
25.
C.
Grenvall
,
C.
Magnusson
,
H.
Lilja
, and
T.
Laurell
,
Anal. Chem.
87
,
5596
(
2015
).
26.
A.
Urbansky
,
P.
Ohlsson
,
A.
Lenshof
,
F.
Garofalo
,
S.
Scheding
, and
T.
Laurell
,
Sci. Rep.
7
,
17161
(
2017
).
27.
R. W.
Barber
and
D. R.
Emerson
,
Microfluid. Nanofluidics
4
,
179
(
2007
).
28.
D. R.
Emerson
,
K.
Cieslicki
,
X.
Gu
, and
R. W.
Barber
,
Lab Chip
6
,
447
(
2006
).
29.
K.
Zografos
,
R. W.
Barber
,
D. R.
Emerson
, and
M. S. N.
Oliveira
,
Microfluid. Nanofluidics
19
,
737
(
2015
).
30.
T.
Kniazeva
,
A. A.
Epshteyn
,
J. C.
Hsiao
,
E. S.
Kim
,
V. B.
Kolachalama
,
J. L.
Charest
, and
J. T.
Borenstein
,
Lab Chip
12
,
1686
(
2012
).
31.
P.
Sethu
,
A.
Sin
, and
M.
Toner
,
Lab Chip
6
,
83
(
2006
).
32.
R. P.
Moiseyenko
and
H.
Bruus
,
Phys. Rev. Appl.
11
,
014014
(
2019
).
33.
I.
Iranmanesh
,
R.
Barnkob
,
H.
Bruus
, and
M.
Wiklund
, in Proceedings of 17th MicroTAS (Chemical and Biological Microsystems Society, 2013) pp. 1400–1402.
34.
I.
Leibacher
,
J.
Schoendube
,
J.
Dual
,
R.
Zengerle
, and
P.
Koltay
,
Biomicrofluidics
9
,
024109
(
2015
).
35.
M.
Antfolk
and
T.
Laurell
,
Anal. Chim. Acta
965
,
9
(
2017
).
36.
B. R.
Mutlu
,
K. C.
Smith
,
J. F.
Edd
,
P.
Nadar
,
M.
Dlamini
,
R.
Kapur
, and
M.
Toner
,
Sci. Rep.
7
,
9915
(
2017
).
37.
P.
Ohlsson
,
K.
Petersson
,
P.
Augustsson
, and
T.
Laurell
,
Sci. Rep.
8
,
9156
(
2018
).
38.
H.
Jonsson
,
C.
Holm
,
A.
Nilsson
,
F.
Petersson
,
P.
Johnsson
, and
T.
Laurell
,
Ann. Thorac. Surg.
78
,
1572
(
2004
).
39.
J. D.
Adams
,
C. L.
Ebbesen
,
R.
Barnkob
,
A. H. J.
Yang
,
H. T.
Soh
, and
H.
Bruus
,
J. Micromech. Microeng.
22
,
075017
(
2012
).

Supplementary Material

You do not currently have access to this content.