The blood-brain barrier (BBB) is the tightest endothelial barrier in humans. Characterized by the presence of tight endothelial junctions and adherens junctions, the primary function of the BBB is to maintain brain homeostasis through the control of solute transit across the barrier. The specific features of this barrier make for unique modes of transport of solutes, nanoparticles, and cells across the BBB. Understanding the different routes of traffic adopted by each of these is therefore critical in the development of targeted therapies. In an attempt to move towards controlled experimental assays, multiple groups are now opting for the use of microfluidic systems. A comprehensive understanding of bio-transport processes across the BBB in microfluidic devices is therefore necessary to develop targeted and efficient therapies for a host of diseases ranging from neurological disorders to the spread of metastases in the brain.

1.
N. J.
Abbott
,
A. A. K.
Patabendige
,
D. E. M.
Dolman
,
S. R.
Yusof
, and
D. J.
Begley
, “
Structure and function of the blood–brain barrier
,”
Neurobiol. Dis.
37
,
13
25
(
2010
).
2.
J.
Barar
,
M. A.
Rafi
,
M. M.
Pourseif
, and
Y.
Omidi
, “
Blood-brain barrier transport machineries and targeted therapy of brain diseases
,”
Bioimpacts
6
,
225
248
(
2016
).
3.
R.
Cecchelli
 et al., “
Modelling of the blood-brain barrier in drug discovery and development
,”
Nat. Rev. Drug Discovery
6
,
650
61
(
2007
).
4.
N. J.
Abbott
,
L.
Rönnbäck
, and
E.
Hansson
, “
Astrocyte-endothelial interactions at the blood-brain barrier
,”
Nat. Rev. Neurosci.
7
,
41
53
(
2006
).
5.
Disorders, Brain Foundation.
6.
J.
Gaugler
,
B.
James
,
T.
Johnson
,
K.
Scholz
, and
J.
Weuve
, “
2016 Alzheimer's disease facts and figures
,”
Alzheimers Dementia
12
,
459
509
(
2016
).
7.
A.
Rossi
 et al., “
Projection of the prevalence of Parkinson's disease in the coming decades: Revisited
,”
Mov. Disord.
33
,
156
159
(
2017
).
8.
G.
D'Andrea
,
L.
Palombi
,
G.
Minniti
,
A.
Pesce
, and
P.
Marchetti
, “
Brain metastases: Surgical treatment and overall survival
,”
World Neurosurg.
97
,
169
177
(
2017
).
9.
W.
Löscher
and
H.
Potschka
, “
Blood-brain barrier active efflux transporters: ATP-binding cassette gene family
,”
NeuroRX
2
,
86
98
(
2005
).
10.
M. W.
van der Helm
,
A. D.
van der Meer
,
J. C. T.
Eijkel
,
A.
van den Berg
, and
L. I.
Segerink
, “
Microfluidic organ-on-chip technology for blood-brain barrier research
,”
Tissue Barriers
4
,
e1142493
(
2016
).
11.
F.
Sohet
and
R.
Daneman
, “
Genetic mouse models to study blood-brain barrier development and function
,”
Fluids Barriers CNS
10
,
1
(
2013
).
12.
I. W. Y.
Mak
,
N.
Evaniew
, and
M.
Ghert
, “
Lost in translation: Animal models and clinical trials in cancer treatment
,”
Am. J. Transl. Res.
6
,
114
118
(
2014
).
13.
M.-F.
Chesselet
and
S. T.
Carmichael
, “
Animal models of neurological disorders
,”
Neurotherapeutics
9
,
241
244
(
2012
).
14.
D.
Pamies
,
T.
Hartung
, and
H. T.
Hogberg
, “
Biological and medical applications of a brain-on-a-chip
,”
Exp. Biol. Med.
239
,
1096
1107
(
2014
).
15.
W. M.
Pardridge
, “
Blood-brain barrier delivery
,”
Drug Discovery Today
12
,
54
61
(
2007
).
16.
Y.
Chen
and
L.
Liu
, “
Modern methods for delivery of drugs across the blood–brain barrier
,”
Adv. Drug Delivery Rev.
64
,
640
665
(
2012
).
17.
D. H.
Jo
,
J. H.
Kim
,
J.-I.
Heo
,
J. H.
,
Kim
, and
C.-H.
Cho
, “
Interaction between pericytes and endothelial cells leads to formation of tight junction in hyaloid vessels
,”
Mol. Cells
36
,
465
471
(
2013
).
18.
J. I.
Alvarez
 et al., “
The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence
,”
Science
334
,
1727
1731
(
2011
).
19.
C. F.
Lien
 et al., “
Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema
,”
J. Biol. Chem.
287
,
41374
41385
(
2012
).
20.
J. I.
Alvarez
,
T.
Katayama
, and
A.
Prat
, “
Glial influence on the blood brain barrier
,”
Glia
61
,
1939
1958
(
2013
).
21.
A.-C.
Luissint
,
C.
Artus
,
F.
Glacial
,
K.
Ganeshamoorthy
, and
P.-O.
Couraud
, “
Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation
,”
Fluids Barriers CNS
9
,
23
(
2012
).
22.
I. R.
Murray
 et al., “
Skeletal and cardiac muscle pericytes: Functions and therapeutic potential
,”
Pharmacol. Ther.
171
,
65
74
(
2017
).
23.
V.
Chintalgattu
 et al., “
Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity
,”
Sci. Transl. Med.
5
,
187ra69
(
2013
).
24.
D. Y.
Park
 et al., “
Plastic roles of pericytes in the blood–retinal barrier
,”
Nat. Commun.
8
,
15296
(
2017
).
25.
A.
Alimperti
 et al., “
Three-dimensional biomimetic vascular model reveals a RhoA, Rac1, and N-cadherin balance in mural cell–endothelial cell-regulated barrier function
,”
Proc. Natl. Acad. Sci.
114
,
8758
8763
(
2017
).
26.
F. L.
Cardoso
,
D.
Brites
, and
M. A.
Brito
, “
Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches
,”
Brain Res. Rev.
64
,
328
363
(
2010
).
27.
D. F.
Balkovetz
, “
Tight junction claudins and the kidney in sickness and in health
,”
Biochim. Biophys. Acta
1788
,
858
863
(
2009
).
28.
N.
Kirschner
and
J. M.
Brandner
, “
Barriers and more: Functions of tight junction proteins in the skin
,”
Ann. N. Y. Acad. Sci.
1257
,
158
166
(
2012
).
29.
A.-M.
Tokes
,
Z.
Schaff
,
A. M.
Szasz
, and
J.
Kulka
, “
The distribution of tight junctions and junctional proteins in the human body
,” in
Tight Junctions in Cancer Metastasis
(
Springer
,
Dordrecht
,
2013
), pp.
29
64
.
30.
Current Frontiers and Perspectives in Cell Biology
, edited by
A.
Najman
(
InTech
,
2012
).
31.
H.-C.
Bauer
,
I. A.
Krizbai
,
H.
Bauer
, and
A.
Traweger
, “
‘You Shall Not Pass’—Tight junctions of the blood brain barrier
,”
Front. Neurosci.
8
,
392
(
2014
).
32.
C.
Bardet
 et al., “
Claudin loss-of-function disrupts tight junctions and impairs amelogenesis
,”
Front. Physiol.
8
,
326
(
2017
).
33.
K.
Ebnet
, “
Junctional adhesion molecules (JAMs): Cell adhesion receptors with pleiotropic functions in cell physiology and development
,”
Physiol. Rev.
97
,
1529
1554
(
2017
).
34.
H. K.
Campbell
,
J. L.
Maiers
, and
K. A.
DeMali
, “
Interplay between tight junctions and adherens junctions
,”
Exp. Cell Res.
358
,
39
44
(
2017
).
35.
G. A.
Rosenberg
, “
Cerebrospinal fluid: Formation, absorption, markers, and relationship to blood–brain barrier
,” in
Primer on Cerebrovascular Diseases
, 2nd ed., edited by
L. R.
Caplan
 et al. (
Academic Press
,
2017
), Chap. 4, pp.
25
31
.
36.
A.
Tietz
and
B.
Engelhardt
, “
Brain barriers: {{crosstalk}} between complex tight junctions and adherens junctions
,”
J. Cell Biol.
209
,
493
506
(
2015
).
37.
E.
Dejana
,
E.
Tournier-Lasserve
, and
B. M.
Weinstein
, “
The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications
,”
Dev. Cell
16
,
209
221
(
2009
).
38.
Y.
Luo
and
G. L.
Radice
, “
N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis
,”
J. Cell Biol.
169
,
29
34
(
2005
).
39.
E. L. F.
Holzbaur
,
L. A.
Ligon
,
M.
Tokito
, and
S.
Karki
, “
Dynein binds to β-catenin and may tether microtubules at adherens junctions
,”
Nat. Cell Biol.
3
,
913
(
2001
).
40.
L.
Fernández-Martín
 et al., “
Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function
,”
Arterioscler. Thromb. Vasc. Biol.
32
,
e90
e102
(
2012
).
41.
C.
Derada Troletti
,
P.
de Goede
,
A.
Kamermans
, and
H. E.
de Vries
, “
Molecular alterations of the blood–brain barrier under inflammatory conditions: The role of endothelial to mesenchymal transition
,”
Biochim. Biophys. Acta
1862
,
452
460
(
2016
).
42.
A.
Rahman
,
K.
Tihanyi
,
I.
Choudhary
, and
M.
Vastag
,
Solubility, Delivery and ADME Problems of Drugs and Drug-Candidates
(
Bentham Science Publishers
,
2011
).
43.
H.
Karanth
and
M.
Rayasa
, “
Nanotechnology in Brain Targeting
,”
Int. J. Pharmaceutical Sci. Nanotech.
1
(
1
),
9
24
(
2018
).
44.
W. A.
Banks
, “
Characteristics of compounds that cross the blood-brain barrier
,”
BMC Neurol.
9
,
S3
(
2009
).
45.
P.
Arranz-Gibert
 et al., “
Lipid bilayer crossing—The gate of symmetry. water-soluble phenylproline-based blood-brain barrier shuttles
,”
J. Am. Chem. Soc.
137
,
7357
7364
(
2015
).
46.
N. J.
Abbott
, “
Blood–brain barrier structure and function and the challenges for CNS drug delivery
,”
J. Inherited Metab. Dis.
36
,
437
449
(
2013
).
47.
H.
Fischer
,
R.
Gottschlich
, and
A.
Seelig
, “
Blood-brain barrier permeation: Molecular parameters governing passive diffusion
,”
J. Membr. Biol.
165
,
201
211
(
1998
).
48.
C. A.
Lipinski
,
F.
Lombardo
,
B. W.
Dominy
, and
P. J.
Feeney
, “
Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
,”
Adv. Drug Delivery Rev.
64
,
4
17
(
2012
).
49.
A.
Dahlin
 et al., “
Gene expression profiling of transporters in the solute carrier and ATP-binding cassette superfamilies in human eye substructures
,”
Mol. Pharm.
10
,
650
663
(
2013
).
50.
W.
Wu
,
A. V.
Dnyanmote
, and
S. K.
Nigam
, “
Remote communication through solute carriers and ATP binding cassette drug transporter pathways: An update on the remote sensing and signaling hypothesis
,”
Mol. Pharmacol.
79
,
795
805
(
2011
).
51.
K. A.
Nałęcz
, “
Solute carriers in the blood–brain barier: Safety in abundance
,”
Neurochem. Res.
42
,
795
809
(
2017
).
52.
A.
Seelig
, “
The role of size and charge for blood–brain barrier permeation of drugs and fatty acids
,”
J. Mol. Neurosci.
33
,
32
41
(
2007
).
53.
A. H.
Schinkel
, “
P-Glycoprotein, a gatekeeper in the blood-brain barrier
,”
Adv. Drug Delivery Rev.
36
,
179
194
(
1999
).
54.
Z.
Ni
,
Z.
Bikadi
,
M. F.
Rosenberg
, and
Q.
Mao
, “
Structure and function of the human breast cancer resistance protein (BCRP/ABCG2)
,”
Curr. Drug Metab.
11
,
603
617
(
2010
).
55.
M. W.
Smith
and
M.
Gumbleton
, “
Endocytosis at the blood–brain barrier: From basic understanding to drug delivery strategies
,”
J. Drug Target.
14
,
191
214
(
2006
).
56.
A. R.
Jones
and
E. V.
Shusta
, “
Blood-brain barrier transport of therapeutics via receptor-mediation
,”
Pharm. Res.
24
,
1759
1771
(
2007
).
57.
F.
Hervé
,
N.
Ghinea
, and
J.-M.
Scherrmann
, “
CNS delivery via adsorptive transcytosis
,”
AAPS J.
10
,
455
472
(
2008
).
58.
C.
Saraiva
 et al., “
Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases
,”
J. Controlled Release
235
,
34
47
(
2016
).
59.
J. V.
Georgieva
,
D.
Hoekstra
, and
I. S.
Zuhorn
, “
Smuggling drugs into the brain: An overview of ligands targeting transcytosis for drug delivery across the blood-brain barrier
,”
Pharmaceutics
6
,
557
583
(
2014
).
60.
H.
Wolburg
,
K.
Wolburg-Buchholz
, and
B.
Engelhardt
, “
Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact
,”
Acta Neuropathol.
109
,
181
190
(
2005
).
61.
C.
Pieper
,
P.
Pieloch
, and
H. J.
Galla
, “
Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier
,”
Brain Res.
1524
,
1
11
(
2013
).
62.
J. P.
Konsman
,
B.
Drukarch
, and
A.-M.
Van Dam
, “
(Peri)vascular production and action of pro-inflammatory cytokines in brain pathology
,”
Clin. Sci.
112
,
1
25
(
2007
).
63.
Y.
Takeshita
and
R. M.
Ransohoff
, “
Inflammatory cell trafficking across the blood-brain barrier (BBB): Chemokine regulation and in vitro models
,”
Immunol. Rev.
248
,
228
239
(
2012
).
64.
Y.
Kienast
 et al., “
Real-time imaging reveals the single steps of brain metastasis formation
,”
Nat. Med.
16
,
116
122
(
2010
).
65.
U. H.
Weidle
,
F.
Birzele
,
G.
Kollmorgen
, and
R.
Rüger
, “
Dissection of the process of brain metastasis reveals targets and mechanisms for molecular-based intervention
,”
Cancer Genomics Proteomics
13
,
245
258
(
2016
).
66.
C.
Fazakas
 et al., “
Transmigration of melanoma cells through the blood-brain barrier: Role of endothelial tight junctions and melanoma-released serine proteases
,”
PLoS One
6
,
e20758
(
2011
).
67.
Y.
Rolland
,
M.
Demeule
,
L.
Fenart
, and
R.
Béliveau
, “
Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface
,”
Pigm. Cell Melanoma Res.
22
,
86
98
(
2009
).
68.
A.
Boussommier-Calleja
,
R.
Li
,
M. B.
Chen
,
S. C.
Wong
, and
R. D.
Kamm
, “
Microfluidics: A new tool for modeling cancer–immune interactions
,”
Trends Cancer
2
,
6
19
(
2016
).
69.
H.
Xu
 et al., “
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
,”
Sci. Rep.
6
,
36670
(
2016
).
70.
S.
Lundquist
 et al., “
Prediction of drug transport through the blood-brain barrier in vivo: A comparison between two in vitro cell models
,”
Pharm. Res.
19
,
976
981
(
2002
).
71.
A.
Wolff
,
M.
Antfolk
,
B.
Brodin
, and
M.
Tenje
, “
In vitro blood–brain barrier models—An overview of established models and new microfluidic approaches
,”
J. Pharm. Sci.
104
,
2727
2746
(
2015
).
72.
C. J.
Czupalla
,
S.
Liebner
, and
K.
Devraj
, “
In vitro models of the blood–brain barrier
,” in
Cerebral Angiogenesis
(
Humana Press
,
New York, NY
,
2014
), pp.
415
437
.
73.
H. C.
Helms
 et al., “
In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use
,”
J. Cereb. Blood Flow Metab.
36
,
862
(
2016
).
74.
Y.
Wang
 et al., “
In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells
,”
Neural Regen. Res.
10
,
2011
2017
(
2015
).
75.
V.
Siddharthan
,
Y. V.
Kim
,
S.
Liu
, and
K. S.
Kim
, “
Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells
,”
Brain Res.
1147
,
39
50
(
2007
).
76.
K.
Hatherell
,
P. O.
Couraud
,
I. A.
Romero
,
B.
Weksler
, and
G. J.
Pilkington
, “
Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models
,”
J. Neurosci. Methods
199
,
223
229
(
2011
).
77.
H. M.
Gibbons
and
M.
Dragunow
, “
Adult human brain cell culture for neuroscience research
,”
Int. J. Biochem. Cell Biol.
42
,
844
856
(
2010
).
78.
D. E.
Eigenmann
 et al., “
Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies
,”
Fluids Barriers CNS
10
,
33
(
2013
).
79.
Y. K.
Kurokawa
 et al., “
Human induced pluripotent stem cell-derived endothelial cells for three-dimensional microphysiological systems
,”
Tissue Eng. Part C
23
,
474
484
(
2017
).
80.
G. A.
Calderon
 et al., “
Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels
,”
Biomater. Sci.
5
,
1652
1660
(
2017
).
81.
E. S.
Lippmann
 et al., “
Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells
,”
Nat. Biotechnol.
30
,
783
791
(
2012
).
82.
E. S.
Lippmann
,
A.
Al-Ahmad
,
S. M.
Azarin
,
S. P.
Palecek
, and
E. V.
Shusta
, “
A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources
,”
Sci. Rep.
4
,
4160
(
2014
).
83.
Y.
He
,
Y.
Yao
,
S. E.
Tsirka
, and
Y.
Cao
, “
Cell-culture models of the blood–brain barrier
,”
Stroke J. Cereb. Circ.
45
,
2514
2526
(
2014
).
84.
Y. I.
Wang
,
H. E.
Abaci
, and
M. L.
Shuler
, “
Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening
,”
Biotechnol. Bioeng.
114
,
184
194
(
2017
).
85.
J. A.
Brown
 et al., “
Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor
,”
Biomicrofluidics
9
,
054124
(
2015
).
86.
G.
Adriani
,
D.
Ma
,
A.
Pavesi
,
R. F.
Kamm
, and
E. L. K.
Goh
, “
A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier
,”
Lab Chip
17
,
448
459
(
2017
).
87.
A.
Herland
 et al., “
Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip
,”
PLoS One
11
,
e0150360
(
2016
).
88.
S.
Bang
 et al., “
A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes
,”
Sci. Rep.
7
,
8083
(
2017
).
89.
L.
Cucullo
,
M.
Hossain
,
V.
Puvenna
,
N.
Marchi
, and
D.
Janigro
, “
The role of shear stress in blood-brain barrier endothelial physiology
,”
BMC Neurosci.
12
,
40
(
2011
).
90.
D. T.
Phan
 et al., “
Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface
,”
Exp. Biol. Med.
242
,
1669
1678
(
2017
).
91.
M.
Kaya
and
B.
Ahishali
, “
Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase
,” in
Permeability Barrier
(
Humana Press
,
2011
), pp.
369
382
.
92.
N. R.
Saunders
,
K. M.
Dziegielewska
,
K.
Møllgård
, and
M. D.
Habgood
, “
Markers for blood-brain barrier integrity: How appropriate is evans blue in the twenty-first century and what are the alternatives?
,”
Front. Neurosci.
9
,
385
(
2015
).
93.
A.
Hoffmann
 et al., “
High and low molecular weight fluorescein isothiocyanate (FITC)–dextrans to assess blood-brain barrier disruption: Technical considerations
,”
Transl. Stroke Res.
2
,
106
111
(
2011
).
94.
B.
Srinivasan
 et al., “
TEER measurement techniques for in vitro barrier model systems
,”
J. Lab. Autom.
20
,
107
126
(
2015
).
95.
M. W.
Helm
 et al., “
Simple and stable transendothelial electrical resistance measurement in organs-on-chips
,” in
The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences
(
Chemical and Biological Micro Systems Society
,
2015
), pp.
771
773
.
96.
L. M.
Griep
 et al., “
BBB on chip: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function
,”
Biomed. Microdevices
15
,
145
150
(
2013
).
97.
R.
Shawahna
,
X.
Decleves
, and
J.-M.
Scherrmann
, “
Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: A special focus on transporters and metabolizing enzymes
,”
Curr. Drug Metab.
14
,
120
136
(
2013
).
98.
S. N.
Bhatia
and
D. E.
Ingber
, “
Microfluidic organs-on-chips
,”
Nat. Biotechnol.
32
,
760
772
(
2014
).
99.
Y.
Shin
 et al., “
Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels
,”
Nat. Protoc.
7
,
1247
59
(
2012
).
100.
W.
Pan
,
K. P.
Stone
,
H.
Hsuchou
,
V. K.
Manda
,
Y.
Zhang
, and
A. J.
Kastin
, “
Cytokine signaling modulates blood-brain barrier function
,”
Curr. Pharm. Des.
17
,
3729
3740
(
2011
).
101.
J. A.
Macdonald
,
N.
Murugesan
, and
J. S.
Pachter
, “
Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature
,”
J. Neurosci. Res.
88
,
1457
1474
(
2009
).
102.
K.
Kisler
,
A. R.
Nelson
,
A.
Montagne
, and
B. V.
Zlokovic
, “
Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease
,”
Nat. Rev. Neurosci.
18
,
419
434
(
2017
).
103.
W. M.
Pardridge
, “
Drug transport across the blood-brain barrier
,”
J. Cereb. Blood Flow Metab.
32
,
1959
1972
(
2012
).
104.
D. S.
Miller
,
B.
Bauer
, and
A. M. S.
Hart
, “
Modulation of P-glycoprotein at the blood-brain barrier: Opportunities to improve CNS pharmacotherapy
,”
Pharmacol. Rev.
60
,
196
209
(
2009
).
105.
L.
Probert
, “
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects
,”
Neuroscience
302
,
2
22
(
2015
).
106.
W.
Pan
,
H.
Hsuchou
,
H.
Tu
, and
A. J.
Kastin
, “
Developmental changes of leptin receptors in cerebral microvessels: Unexpected relation to leptin transport
,”
Endocrinology
149
,
877
885
(
2008
).
107.
T.
Wyss-Coray
, “
Inflammation in Alzheimer disease: Driving force, bystander or beneficial response?
,”
Nat. Med.
12
,
1191
1197
(
2006
).
108.
A.
Chaudhuri
,
F.
Duan
,
B.
Morsey
,
Y.
Persidsky
, and
G. D.
Kanmogne
, “
HIV-1 activates proinflammatory and interferon-inducible genes in human brain microvascular endothelial cells: Putative mechanisms of blood-brain barrier dysfunction
,”
J. Cereb. Blood Flow Metab.
28
,
697
711
(
2008
).
109.
L.
Cucullo
,
N.
Marchi
,
M.
Hossain
, and
D.
Janigro
, “
A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system
,”
J. Cereb. Blood Flow Metab.
31
,
767
777
(
2011
).
110.
E. V.
Shusta
, “
Blood-brain barrier genomics, proteomics, and new transporter discovery
,”
NeuroRx
2
,
151
161
(
2005
).
111.
B.
Poller
 et al., “
The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies
,”
J. Neurochem.
107
,
1358
1368
(
2008
).
112.
E.
Urich
,
S. E.
Lazic
,
J.
Molnos
,
I.
Wells
, and
P. O.
Freskgård
, “
Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models
,”
PLoS One
7
,
e38149
(
2012
).
113.
A.
Appelt-Menzel
 et al., “
Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells
,”
Stem Cell Rep.
8
,
894
906
(
2017
).
114.
B.
Prabhakarpandian
 et al., “
SyM-BBB: A microfluidic blood brain barrier model
,”
Lab Chip
13
,
1093
1101
(
2013
).
115.
T.
Osaki
,
Y.
Shin
,
V.
Sivathanu
,
M.
Campisi
, and
R. D.
Kamm
, “
In vitro microfluidic models for neurodegenerative disorders
,”
Adv. Healthcare Mater.
7
,
1700489
(
2017
).
116.
S.
Ohtsuki
 et al., “
Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model
,”
Mol. Pharm.
10
(
1
),
289
296
(
2012
).
117.
Y.
Sano
 et al., “
Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function
,”
J. Cell. Physiol.
225
,
519
528
(
2010
).
118.
H.
Franke
,
H. J.
Galla
, and
C. T.
Beuckmann
, “
An improved low-permeability in vitro-model of the blood-brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol
,”
Brain Res.
818
,
65
71
(
1999
).
119.
Y.
Zhang
 et al., “
Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability
,”
Drug Metab. Dispos.
34
,
1935
1943
(
2006
).
120.
S. G.
Canfield
 et al., “
An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells
,”
J. Neurochem.
140
,
874
888
(
2017
).
121.
R. J.
Rist
 et al., “
F-actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors
,”
Brain Res.
768
,
10
18
(
1997
).
122.
S. R.
Yusof
,
A.
Avdeef
, and
N. J.
Abbott
, “
In vitro porcine blood-brain barrier model for permeability studies: PCEL-X software pKaFLUXmethod for aqueous boundary layer correction and detailed data analysis
,”
Eur. J. Pharm. Sci.
65
,
98
111
(
2014
).
123.
J. A.
Kim
 et al., “
Collagen-based brain microvasculature model in vitro using three-dimensional printed template
,”
Biomicrofluidics
9
,
024115
(
2015
).
124.
E. W.
Esch
,
A.
Bahinski
, and
D.
Huh
, “
Organs-on-chips at the frontiers of drug discovery
,”
Nat. Rev. Drug Discovery
14
,
248
260
(
2015
).
125.
R.
Booth
and
H.
Kim
, “
Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB)
,”
Lab Chip
12
,
1784
(
2012
).
126.
G.
Quadrato
,
J.
Brown
, and
P.
Arlotta
, “
The promises and challenges of human brain organoids as models of neuropsychiatric disease
,”
Nat. Med.
22
,
1220
1228
(
2016
).
127.
C. F.
Cho
 et al., “
Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents
,”
Nat. Commun.
8
,
15623
(
2017
).
128.
M.
Grskovic
,
A.
Javaherian
,
B.
Strulovici
, and
G. Q.
Daley
, “
Induced pluripotent stem cells—Opportunities for disease modelling and drug discovery
,”
Nat. Rev. Drug Discovery
10
,
915
929
(
2011
).
129.
R.
Prantil-Baun
 et al., “
Physiologically-based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips
,”
Annu. Rev. Pharmacol. Toxicol.
58
,
37
64
(
2016
).
130.
K.
Domanskya
,
D. C.
Lesliea
,
J.
McKinneya
,
J. P.
Frasera
,
J. D.
Sliza
,
T.
Hamkins-Indika
,
G. A.
Hamiltona
,
A.
Bahinskia
, and
D. E.
Ingber
, “
Clear castable polyurethane elastomer for fabrication of microfluidic devices
,”
Lab Chip
13
,
3956
3964
(
2013
).
131.
W. M.
Pardridge
, “
Drug and gene delivery to the brain: The vascular route
,”
Neuron
36
,
555
558
(
2002
).
132.
L. S.
Honig
,
B.
Vellas
,
M.
Woodward
,
M.
Boada
,
R.
Bullock
,
M.
Borrie
,
K.
Hager
,
N.
Andreasen
,
E.
Scarpini
,
H.
Liu-Seifert
,
M.
Case
,
R. A.
Dean
,
A.
Hake
,
K.
Sundell
,
V.
Poole Hoffmann
,
C.
Carlson
,
R.
Khanna
,
M.
Mintun
,
R.
DeMattos
,
K. J.
Selzler
, and
E.
Siemers
, “
Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease
,”
N Engl J Med
378
,
321
330
(
2018
).
133.
A.
Abbott
and
E.
Dolgin
, “
News in focus
,”
Nature
540
,
15
16
(
2016
).
134.
W. J.
Huang
,
W. W.
Chen
, and
X.
Zhang
, “
Proteasome inhibitors in glioblastoma
,”
Oncol. Lett.
13
,
1058
1062
(
2017
).
135.
S.
Veszelka
,
A.
Bocsik
,
F. R.
Walter
,
D.
Hantosi
, and
M. A.
Deli
, “
Blood-brain barrier co-culture models to study nanoparticle penetration: Focus on co-culture systems
,”
Acta Biol. (Szeged)
59
,
157
168
(
2015
).
136.
G.
Tosi
 et al., “
The ‘fate’ of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system
,”
J. Drug Delivery Sci. Technol.
32
,
66
76
(
2016
).
137.
D.
Belletti
 et al., “
Exploiting the versatility of cholesterol in nanoparticles formulation
,”
Int. J. Pharm.
511
,
331
340
(
2016
).
138.
S. P.
Manninger
 et al., “
An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions
,”
Am. J. Neuroradiol.
26
,
2290
2300
(
2005
).
139.
B.
Chertok
 et al., “
Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors
,”
Biomaterials
29
,
487
496
(
2008
).
140.
X.
Meng
 et al., “
Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents
,”
Acta Pharmacol. Sin.
28
,
2019
2026
(
2007
).
141.
Z.
Bakhtiary
 et al., “
Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges
,”
Nanomed. Nanotechnol. Biol. Med.
12
,
287
307
(
2016
).
142.
K.
Hu
 et al., “
Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinsons disease
,”
Int. J. Pharm.
415
,
273
283
(
2011
).
143.
J. A.
Loureiro
 et al., “
Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment
,”
Colloids Surf. B
145
,
8
13
(
2016
).
144.
T.
Moos
and
E. H.
Morgan
, “
Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat
,”
J. Neurochem.
79
,
119
129
(
2001
).
145.
S.
Paris-robidas
,
V.
Emond
,
C.
Tremblay
, and
D.
Soulet
, “
In vivo labeling of brain capillary endothelial cells after intravenous injection of monoclonal antibodies targeting the transferrin receptor
,”
Mol. Pharmacol.
80
,
32
39
(
2011
).
146.
R.
Dal Magro
 et al., “
ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier
,”
J. Controlled Release
249
,
103
110
(
2017
).
147.
O.
Gartziandia
 et al., “
Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration
,”
Colloids Surf. B
134
,
304
313
(
2015
).
148.
B. D.
Chithrani
,
A. A.
Ghazani
, and
W. C. W.
Chan
, “
Determing the size and shape dependence of gold nanoparticles uptake into mammalian cells
,”
Nano Lett.
6
,
662
668
(
2006
).
149.
F.
Lu
,
S. H.
Wu
,
Y.
Hung
, and
C. Y.
Mou
, “
Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles
,”
Small
5
,
1408
1413
(
2009
).
150.
W.
Jiang
,
B. Y. S.
Kim
,
J. T.
Rutka
, and
W. C. W.
Chan
, “
Nanoparticle-mediated cellular response is size-dependent
,”
Nat. Nanotechnol.
3
,
145
150
(
2008
).
151.
C.
Åberg
, “
Quantitative analysis of nanoparticle transport through in vitro blood-brain barrier models
,”
Tissue Barriers
4
,
e1143545
(
2016
).
152.
H.
Ding
 et al., “
Enhanced blood-brain barrier transm
,”
Nanotechnology
25
(
5
),
055101
(
2014
).
153.
Y. C.
Kuo
and
C. Y.
Shih-Huang
, “
Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway
,”
J. Drug Target.
21
,
730
738
(
2013
).
154.
S.
Pilakka-Kanthikeel
,
V. S. R.
Atluri
,
V.
Sagar
, and
M.
Nair
, “
Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: An in-vitro study
,”
PLoS One
8
,
e62241
(
2013
).
155.
R.
Prades
 et al., “
Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor
,”
Biomaterials
33
,
7194
7205
(
2012
).
156.
D.
Ye
 et al., “
Nanoparticle accumulation and transcytosis in brain endothelial cell layers
,”
Nanoscale
5
,
11153
(
2013
).
157.
J.
Chang
 et al., “
Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier
,”
Int. J. Pharm.
379
,
285
292
(
2009
).
158.
Y. C.
Kuo
and
C. Y.
Chung
, “
Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells
,”
Colloids Surf. B
91
,
242
249
(
2012
).
159.
Y. C.
Kuo
and
C. L.
Lee
, “
Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier
,”
Colloids Surf. B
90
,
75
82
(
2012
).
160.
K. K.
Cheng
 et al., “
Highly stabilized curcumin nanoparticles tested in an in vitro blood–brain barrier model and in alzheimer's disease Tg2576 mice
,”
AAPS J.
15
,
324
336
(
2013
).
161.
N.
Nikandish
,
L.
Hosseinzadeh
,
A. H.
Azandaryani
, and
K.
Derakhshandeh
, “
The role of nanoparticle in brain permeability: An in-vitro BBB model
,”
Iran. J. Pharm. Res.
15
,
403
413
(
2016
).
162.
E.
Brun
,
M.
Carrière
, and
A.
Mabondzo
, “
In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles
,”
Biomaterials
33
,
886
896
(
2012
).
163.
S.
Hanada
 et al., “
Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification
,”
Int. J. Mol. Sci.
15
,
1812
1825
(
2014
).
164.
J. V.
Georgieva
 et al., “
Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro
,”
Mol. Ther.
19
,
318
325
(
2011
).
165.
H.
Baghirov
 et al., “
Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier
,”
PLoS One
11
,
1
22
(
2016
).
166.
A.
Bonoiu
 et al., “
MMP-9 gene silencing by a quantum dot-siRNA nanoplex delivery to maintain the integrity of the blood brain barrier
,”
Brain Res.
1282
,
142
155
(
2009
).
167.
G.
Xu
 et al., “
Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier
,”
Bioconjugate Chem.
19
,
1179
1185
(
2008
).
168.
L.
Shen
and
H. F.
Ji
, “
Contribution of degradation products to the anticancer activity of curcumin
,”
Clin. Cancer Res.
15
,
7108
(
2009
).
169.
Q.
Wang
 et al., “
Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier
,”
Int. J. Pharm.
288
,
349
359
(
2005
).
170.
D. J.
Mc Carthy
,
M.
Malhotra
,
A. M.
O'Mahony
,
J. F.
Cryan
, and
C. m.
O'Driscoll
, “
Nanoparticles and the blood-brain barrier: Advancing from in-vitro models towards therapeutic significance
,”
Pharm. Res.
32
,
1161
1185
(
2015
).
171.
M. N.
Pangalos
,
L. E.
Schechter
, and
O.
Hurko
, “
Drug development for CNS disorders: strategies for balancing risk and reducing attrition
,”
Nat. Rev. Drug Discovery
6
,
521
32
(
2007
).
You do not currently have access to this content.