Degradation of scaffolds is an important problem in tissue regeneration management. This paper reports a comparative study on degradation of the printed 3D poly (lactic-co-glycolic acid) scaffold under three conditions, namely, micro-channel, incubator static, and incubator shaking in the phosphate buffer saline (PBS) solution. In the case of the micro-channel condition, the solution was circulated. The following attributes of the scaffold and the solution were measured, including the mass or weight loss, water uptake, morphological and structural changes, and porosity change of the scaffold and the pH value of the PBS solution. In addition, shear stress in the scaffold under the micro-channel condition at the initial time was calculated with Computational Fluid Dynamics (CFD) to see how the shear stress factor may affect the morphological change of the scaffold. The results showed that the aforementioned attributes in the condition of the micro-channel were significantly different from the other two conditions. The mechanisms that account for the results were proposed. The reasons behind the results were explored. The main contributions of the study were (1) new observations of the degradation behavior of the scaffold under the micro-channel condition compared with the conditions of incubator static and incubator shaking along with underlying reasons, (2) new understanding of the role of the shear stress in the scaffold under the condition of the micro-channel to the morphological change of the scaffold, and (3) new understanding of interactions among the attributes pertinent to scaffold degradation, such as weight loss, water uptake, pH value, porosity change, and morphological change. This study sheds important light on the scaffold degradation to be controlled more precisely.

1.
B. S.
Kim
and
D. J.
Mooney
, “
Development of biocompatible synthetic extracellular matrices for tissue engineering
,”
Trends Biotechnol.
16
,
224
230
(
1998
).
2.
C. M.
Agrawal
and
R. B.
Ray
, “
Biodegradable polymer scaffolds for musculoskeletal tissue engineering
,”
J. Biomed. Mater. Res.
55
,
141
150
(
2001
).
3.
J. E.
Babensee
,
J. M.
Anderso
,
L. V.
Melntire
, and
A. G.
Mikos
, “
Host response to tissue engineered devices
,”
Adv. Drug Delivery Rev.
33
,
111
139
(
1998
).
4.
J. C.
Middleton
and
A. J.
Tipton
, “
Synthetic biodegradable polymers as orthopedic devices
,”
Biomaterials
21
,
2335
2346
(
2000
).
5.
H. B.
Zhang
,
L.
Zhou
, and
W. J.
Zhang
, “
Control of scaffold degradation in tissue engineering: A review
,”
Tissue Eng., Part B Rev.
20
(
5
),
492
502
(
2014
).
6.
A.
Göpferich
, “
Mechanisms of polymer degradation and erosion
,”
Biomaterials
17
,
103
114
(
1996
).
7.
F.
Von Burkersroda
,
L.
Schedl
, and
A.
Göpferich
, “
Why degradable polymers undergo surface erosion or bulk erosion
,”
Biomaterials
23
,
4221
4231
(
2002
).
8.
T. G.
Park
, “
Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition
,”
Biomaterials
16
,
1123
1130
(
1995
).
9.
T. G.
Park
, “
Degradation of poly(D,L-lactic acid) microspheres: Effect of molecular weight
,”
J. Controlled Release
30
,
161
173
(
1994
).
10.
K. A.
Athanasiou
,
J. P.
Schmitz
, and
C. M.
Agrawal
, “
The effect of porosity on in vitro degradation of polylactic acid-polyglycolic acid implants used in repair of particular cartilage
,”
Tissue Eng.
4
,
53
63
(
1998
).
11.
S.
Hurrell
and
R. E.
Cameron
, “
The effect of initial polymer morphology on the degradation and drug release from polyglycolide
,”
Biomaterials
23
,
2401
2409
(
2002
).
12.
J. C.
Victor
and
X. M.
Peter
, “
The effect of surface area on the degradation rate of nanofibrous poly(l-lactic acid) foams
,”
Biomaterials
27
,
3708
3715
(
2006
).
13.
C. M.
Agrawal
,
D.
Huang
,
J. P.
Schmitz
, and
K. A.
Athanasiou
, “
Elevated temperature degradation of a 50:50 copolymer of PLA–PGA
,”
Tissue Eng.
3
,
345
352
(
1997
).
14.
Z. S.
Banu
and
D. J.
Burgess
, “
Effect of acidic pH on PLGA microsphere degradation and release
,”
J. Controlled Release
122
,
338
344
(
2007
).
15.
S. M.
Li
,
A.
Girard
,
H.
Garreau
, and
M.
Vert
, “
Enzymatic degradation of polylactide stereocopolymers with predominant D-lactyl contents
,”
Polym. Degrad. Stab.
71
,
61
67
(
2001
).
16.
N. D.
Miller
and
D. F.
Williams
, “
The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain
,”
Biomaterials
5
,
365
368
(
1984
).
17.
R. X.
Yin
,
N.
Zhang
,
K. M.
Wang
,
H.
Long
,
T. L.
Xing
,
J.
Nie
,
H. B.
Zhang
, and
W. J.
Zhang
, “
Material design and photo-regulated hydrolytic degradation behavior of tissue engineering scaffolds fabricated via 3D fiber deposition
,”
J. Mater. Chem. B
5
,
329
340
(
2017
).
18.
S. P.
Zhong
,
P. J.
Doherty
, and
D. F.
Williams
, “
The effects of applied strain on the degradation of absorbable suture in vitro
,”
Clin. Mater.
14
,
183
189
(
1993
).
19.
M.
Deng
,
J.
Zhou
,
G.
Chen
,
D.
Burkley
,
Y.
Xu
,
D.
Jamiolkowski
, and
T.
Barbolt
, “
Effect of load and temperature on in vitro degradation of poly(glycolide-co-l-lactide) multifilament braids
,”
Biomaterials
26
,
4327
4336
(
2005
).
20.
M.
Deng
,
G.
Chen
,
D.
Burkley
,
J.
Zhou
,
D.
Jamiolkowski
,
Y.
Xu
, and
R.
Vetrecin
, “
A study on in vitro degradation behavior of a poly(glycolide-co-l-lactide) monofilament
,”
Acta Biomater.
4
,
1382
1391
(
2008
).
21.
M.
Guo
,
Z. W.
Chu
,
J.
Yao
,
W. T.
Feng
,
Y. X.
Wang
,
L. Z.
Wang
, and
Y. B.
Fan
, “
The effects of tensile stress on degradation of biodegradable PLGA membranes: A quantitative study
,”
Polym. Degrad. Stab.
124
,
95
100
(
2016
).
22.
C. M.
Agrawal
,
J. S.
McKinney
,
D.
Lanctot
, and
K. A.
Athanasiou
, “
Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering
,”
Biomaterials
21
,
2443
2452
(
2000
).
23.
M. K.
Heljak
,
W.
Swieszkowski
, and
K. J.
Kurzydlowski
, “
Modeling of the degradation kinetics of biodegradable scaffolds: The effects of the environmental conditions
,”
J. Appl. Polym. Sci.
131
,
40280
(
2014
).
24.
M. H.
Wu
,
S. B.
Huang
, and
Z. F.
Cui
, “
Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing
,”
Sens. Actuators, B
129
,
231
240
(
2008
).
25.
M. H.
Wu
,
S. B.
Huang
,
Z. F.
Cui
, and
Z.
Cui
, “
A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture
,”
Biomed. Microdevices
10
,
309
319
(
2008
).
26.
T. J.
Maguire
,
E.
Novik
, and
P.
Chao
, “
Design and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidate
,”
Drug. Metab.
10
,
1192
1199
(
2009
).
27.
S. B.
Huang
,
M. H.
Wu
,
S. S.
Wang
, and
G. B.
Lee
, “
Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays
,”
Biomed. Microdevices
13
,
415
430
(
2011
).
28.
A.
Abbott
, “
Cell culture: Biology's new dimension
,”
Nature
424
,
870
827
(
2003
).
29.
E.
Cukierman
,
R.
Pankov
, and
D. R.
Stevens
, “
Taking cell-matrix adhesions to the third dimension
,”
Science
294
,
1708
1712
(
2001
).
30.
C. G.
Uhl
,
V. R.
Muzykantov
, and
Y. L.
Liu
, “
Biomimetic microfluidic platform for the quantification of transient endothelial monolayer permeability and therapeutic transport under mimicked cancerous conditions
,”
Biomicrofluidics
12
,
014101
(
2018
).
31.
M. H.
Wu
,
J. P. G.
Urban
, and
Z.
Cui
, “
Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture
,”
Biomed. Microdevices
8
,
331
340
(
2006
).
32.
M. H.
Wu
,
S. B.
Huang
, and
G. B.
Lee
, “
Microfluidic cell culture system for drug research
,”
Lab Chip
10
,
939
956
(
2010
).
33.
A.
Dawson
,
C.
Dyer
,
J.
Macfie
,
J.
Davies
,
L.
Karsai
,
J.
Greenman
, and
M.
Jacobsen
, “
A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow
,”
Biomicrofluidics
10
,
064101
(
2016
).
34.
L. L.
Lin
,
Y. J.
Lu
, and
M. L.
Fang
, “
Computational modeling of the fluid mechanical environment of regular and irregular scaffolds
,”
Int. J. Autom. Comput.
12
,
529
539
(
2015
).
35.
E.
Vey
and
C.
Roger
, “
Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution
,”
Polym. Degrad. Stab.
93
,
1869
1876
(
2008
).
36.
A. N.
Ford Versypt
,
D. W.
Pack
, and
R. D.
Braatz
, “
Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-A review
,”
J. Controlled Release
165
,
29
37
(
2013
).
37.
L.
Peng
,
X. L.
Fang
,
X. L.
Jia
, and
Y. B.
Fan
, “
Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold
,”
Acta Biomater.
6
,
2991
(
2010
).
38.
X. J.
Yao
,
J. J.
Fang
, and
W. J.
Zhang
, “
A further study on the analytical model for the permeability in flip-chip packaging
,”
J. Electron. Packag. Trans. ASME.
10
,
1115
(
2017
).
39.
J. W.
Wan
,
W. J.
Zhang
, and
D.
Bergstrom
, “
Recent advances in modeling the underfill process in flip-chip packaging
,”
Microelectron. J.
38
,
67
75
(
2006
).
40.
N. K.
Bawolin
,
M.
Li
,
X. B.
Chen
, and
W. J.
Zhang
, “
Modeling material-degradation-induced elastic property of tissue engineering scaffolds
,”
J. Biomech. Eng.
132
(
11
),
111001
(
2010
).
You do not currently have access to this content.