Conventional cell-sized well arrays have advantages of high occupancy, simple operation, and low cost for capturing single-cells. However, they have insufficient space for including reagents required for cell treatment or analysis, which restricts the wide application of cell-sized well arrays as a single-cell research tool alone. Here, we present a novel dual-well array chip, which integrates capture-wells (20 μm in diameter) with reaction-wells (100 μm in diameter) and describe a flow method for convenient single-cell analysis requiring neither complicated infra-structure nor high expenditure, while enabling highly efficient single cell trapping (75.8%) with only 11.3% multi-cells. Briefly, the cells are first loaded into the dual-wells by gravity and then multi-cells in the reaction-wells are washed out by phosphate buffer saline. Next, biochemical reagents are loaded into reaction-wells using the scraping method and the chip is packed as a sandwich structure. We thereby successfully measured intracellular β-galactosidase activity of K562 cells at the single-cell level. We also used computational simulations to illustrate the working principle of dual-well structure and found out a relationship between the wall shear stress distribution and the aspect ratio of the dual-well array chip which provides theoretical guidance for designing multi-wells chip for convenient single-cell analysis. Our work produced the first dual-well chip that can simultaneously provide a high occupancy rate for single cells and sufficient space for reagents, as well as being low in cost and simple to operate. We believe that the feasibility and convenience of our method will enhance its use as a practical single-cell research tool.

1.
S.
Lindström
,
R.
Larsson
, and
H. A.
Svahn
,
Electrophoresis
29
(
6
),
1219
1227
(
2008
).
2.
J. R.
Rettig
and
A.
Folch
,
Anal. Chem.
77
(
17
),
5628
5634
(
2005
).
3.
C. D.
Di
and
L. P.
Lee
,
Anal. Chem.
78
(
23
),
7918
7925
(
2006
).
4.
G.
Agarwal
and
C.
Livermore
,
Lab Chip
11
(
13
),
2204
2211
(
2011
).
5.
S.
Lindström
and
H.
Andersson-Svahn
,
Biochim. Biophys. Acta
1810
(
3
),
308
316
(
2011
).
6.
M.
Lundqvist
,
P.
Nygren
,
B. H.
Jonsson
, and
K.
Broo
,
Angew. Chem.
45
(
48
),
8169
(
2006
).
7.
P.
Kumaresan
,
C. J.
Yang
,
S. A.
Cronier
,
R. G.
Blazej
, and
R. A.
Mathies
,
Anal. Chem.
80
(
10
),
3522
3529
(
2008
).
8.
E. Z.
Macosko
,
A.
Basu
,
R.
Satija
,
J.
Nemesh
,
K.
Shekhar
,
M.
Goldman
,
I.
Tirosh
,
A. R.
Bialas
,
N.
Kamitaki
, and
E. M.
Martersteck
,
Cell
161
(
5
),
1202
1214
(
2015
).
9.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
,
Biomicrofluidics
7
(
2
),
21501
(
2013
).
10.
D.
Jin
,
B.
Deng
,
J. X.
Li
,
W.
Cai
,
L.
Tu
,
J.
Chen
,
Q.
Wu
, and
W. H.
Wang
,
Biomicrofluidics
9
(
1
),
014101
(
2015
).
11.
M.
Dhar
,
J.
Wong
,
A.
Karimi
,
J.
Che
,
C.
Renier
,
M.
Matsumoto
,
M.
Triboulet
,
E. B.
Garon
,
J. W.
Goldman
, and
M. B.
Rettig
,
Biomicrofluidics
9
(
6
),
064116
(
2015
).
12.
L.
Mi
,
L.
Huang
,
J.
Li
,
G.
Xu
,
Q.
Wu
, and
W.
Wang
,
Lab Chip
16
(
23
),
4507
(
2016
).
13.
I.
Inoue
,
Y.
Wakamoto
,
H.
Moriguchi
,
K.
Okano
, and
K.
Yasuda
,
Lab Chip
1
(
1
),
50
55
(
2001
).
14.
A.
Folch
and
M.
Toner
,
Annu. Rev. Biomed. Eng.
2
,
227
(
2000
).
15.
M.
Ochsner
,
M. R.
Dusseiller
,
H. M.
Grandin
,
S.
Luna-Morris
,
M.
Textor
,
V.
Vogel
, and
M. L.
Smith
,
Lab Chip
7
(
8
),
1074
1077
(
2007
).
16.
Y.
Tokimitsu
,
H.
Kishi
,
S.
Kondo
,
R.
Honda
,
K.
Tajiri
,
K.
Motoki
,
T.
Ozawa
,
S.
Kadowaki
,
T.
Obata
, and
S.
Fujiki
,
Cytometry, Part A
71
(
12
),
1003
1010
(
2007
).
17.
M.
Deutsch
,
A.
Deutsch
,
O.
Shirihai
,
I.
Hurevich
,
E.
Afrimzon
,
Y.
Shafran
, and
N.
Zurgil
,
Lab Chip
6
(
8
),
995
(
2006
).
18.
A.
Khademhosseini
,
J.
Yeh
,
S.
Jon
,
G.
Eng
,
K. Y.
Suh
,
J. A.
Burdick
, and
R.
Langer
,
Lab Chip
4
(
5
),
425
(
2004
).
19.
D. B.
Weibel
,
W. R.
Diluzio
, and
G. M.
Whitesides
,
Nat. Rev. Microbiol.
5
(
3
),
209
(
2007
).
20.
S.
Lindström
,
M.
Eriksson
,
T.
Vazin
,
J.
Sandberg
,
J.
Lundeberg
,
J.
Frisén
, and
H.
Andersson-Svahn
,
PLos One
4
(
9
),
e6997
(
2009
).
21.
V.
Lecault
,
M.
Vaninsberghe
,
S.
Sekulovic
,
D. J.
Knapp
,
S.
Wohrer
,
W.
Bowden
,
F.
Viel
,
T.
Mclaughlin
,
A.
Jarandehei
, and
M.
Miller
,
Nat. Methods
8
(
7
),
581
(
2011
).
22.
A. K.
White
,
M.
Van Insberghe
,
O. I.
Petriv
,
M.
Hamidi
,
D.
Sikorski
,
M. A.
Marra
,
J.
Piret
,
S.
Aparicio
, and
C. L.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
34
),
13999
(
2011
).
23.
M. C.
Park
,
J. Y.
Hur
,
H. S.
Cho
,
S. H.
Park
, and
K. Y.
Suh
,
Lab Chip
11
(
1
),
79
(
2011
).
24.
C.
Wang
,
W.
Liu
,
M.
Tan
,
H.
Sun
, and
Y.
Yu
,
Biomicrofluidics
11
(
4
),
7918
7925
(
2017
).
25.
Y.
Zhu
,
Y. X.
Zhang
,
W. W.
Liu
,
Y.
Ma
,
Q.
Fang
, and
B.
Yao
,
Sci. Rep.
5
,
9551
(
2015
).
26.
Y.
Zhu
,
L. N.
Zhu
,
R.
Guo
,
H. J.
Cui
,
S.
Ye
, and
Q.
Fang
,
Sci. Rep.
4
(
6186
),
5046
(
2014
).
27.
W. B.
Du
,
Q.
Fang
,
Q. H.
He
, and
Z. L.
Fang
,
Anal. Chem.
77
(
5
),
1330
(
2005
).
28.
Y.
Zhu
and
Q.
Fang
,
Anal. Chim. Acta
787
(
13
),
24
(
2013
).
29.
C. H.
Lin
,
Y. H.
Hsiao
,
H. C.
Chang
,
C. F.
Yeh
,
C. K.
He
,
E. M.
Salm
,
C.
Chen
,
I. M.
Chiu
, and
C. H.
Hsu
,
Lab Chip
15
(
14
),
2928
(
2015
).
30.
S. H.
Kim
,
M.
Antfolk
,
M.
Kobayashi
,
S.
Kaneda
,
T.
Laurell
, and
T.
Fujii
,
Lab Chip
15
(
22
),
4356
(
2015
).
31.
E.
Bisceglia
,
M.
Cubizolles
,
F.
Mallard
,
F.
Vinet
,
O.
Français
, and
P. B.
Le
,
Lab Chip
13
(
5
),
901
909
(
2013
).
32.
M.
Bocchi
,
L.
Rambelli
,
A.
Faenza
,
L.
Giulianelli
,
N.
Pecorari
,
E.
Duqi
,
J. C.
Gallois
, and
R.
Guerrieri
,
Lab Chip
12
(
17
),
3168
3176
(
2012
).
33.
Y.
Tian
,
Y. L.
Zhang
,
J. F.
Ku
,
Y.
He
,
B. B.
Xu
,
Q. D.
Chen
,
H.
Xia
, and
H. B.
Sun
,
Lab Chip
10
(
21
),
2902
2905
(
2010
).
34.
M. A.
Unger
,
H. P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
,
Science
288
(
5463
),
113
(
2000
).
35.
D. A.
Chang-Yen
,
R. K.
Eich
, and
B. K.
Gale
,
J. Lightwave Technol.
23
(
6
),
2088
2093
(
2005
).
36.
M. P.
Lutolf
,
R.
Doyonnas
,
K.
Havenstrite
,
K.
Koleckar
, and
H. M.
Blau
,
Integr. Biol.
1
(
1
),
59
69
(
2009
).
37.
G.
Ocvirk
,
H.
Salimi-Moosavi
,
R. J.
Szarka
, and
E. A.
Arriaga
,
Proc. IEEE
92
(
1
),
115
125
(
2015
).
38.
A.
Manbachi
,
S.
Shrivastava
,
M.
Cioffi
,
B. G.
Chung
,
M.
Moretti
,
U.
Demirci
,
M.
Yliperttula
, and
A.
Khademhosseini
,
Lab Chip
8
(
5
),
747
754
(
2008
).
39.
J. Y.
Park
,
M.
Morgan
,
A. N.
Sachs
,
J.
Samorezov
,
R.
Teller
,
Y.
Shen
,
K. J.
Pienta
, and
S.
Takayama
,
Microfluid. Nanofluid.
8
(
2
),
263
268
(
2010
).
40.
H.
Somaweera
,
S. O.
Haputhanthri
,
A.
Ibraguimov
, and
D.
Pappas
,
Analyst
140
(
15
),
5029
5038
(
2015
).
41.
D. P.
Gaver
 III
and
S. M.
Kute
,
Biophys. J.
75
(
2
),
721
733
(
1998
).
42.
S. Y.
Hwang
,
K. W.
Kwon
,
K. J.
Jang
,
M. C.
Park
,
J. S.
Lee
, and
K. Y.
Suh
,
Anal. Chem.
82
(
7
),
3016
3022
(
2010
).
43.
N.
Korin
,
A.
Bransky
,
M.
Khoury
,
U.
Dinnar
, and
S.
Levenberg
,
Biotechnol. Bioeng.
102
(
4
),
1222
(
2009
).
44.
A.
Plovins
,
A. M.
Alvarez
,
M.
Ibañez
,
M.
Molina
, and
C.
Nombela
,
Appl. Environ. Microbiol.
60
(
12
),
4638
(
1994
).
45.
J.
Hofmann
and
M.
Sernetz
,
Anal. Biochem.
131
(
1
),
180
186
(
1983
).
46.
S. Q.
Gu
,
Y. X.
Zhang
,
Y.
Zhu
,
W. B.
Du
,
B.
Yao
,
Q.
Fang
, and
A.
Chem
,
Anal. Chem.
83
(
19
),
7570
7576
(
2011
).

Supplementary Material

You do not currently have access to this content.