To evaluate variations of blood circulating in closed loops, hemorheological properties including blood viscosity and red blood cells (RBCs) are quantitatively measured with independent in-vitro instruments after collecting blood from a closed loop. But, most previous methods require periodic blood collections which induce several problems such as geometric differences between the fluidic channel and the in-vitro method, hemodilution, storage time, and unspecific blood flow rates. To resolve these issues, in this study, blood viscosity and RBC aggregation of blood circulating within a closed loop are measured with a microfluidic platform periodically and simultaneously. To demonstrate the proposed method, in-vitro closed-loop circulation is established by connecting several components (peristaltic pump, air compliance unit, fluid divider, and reservoir) in series. In addition, to measure blood viscosity and RBC aggregation, a microfluidic platform composed of a microfluidic device, pinch valve, and syringe pump is created. During each period, blood viscosity and RBC aggregation are measured by monitoring blood flow at constant blood flow, and image intensity at stationary blood flow. The proposed method is first employed to evaluate the effect of hematocrits and dextran concentrations on the RBC aggregation and blood viscosity by using a syringe pump (i.e., specific blood flow-rate). The method is then applied to detect the blood viscosity and RBC aggregation under in-vitro closed-loop circulation (i.e., unspecific blood flow-rate). From these experimental demonstrations, it is found that the suggested method can be effectively used to monitor the RBC aggregation and blood viscosity under in-vitro closed-loop circulation. Since this method does not require periodic collection from closed-loop circulation or an additional procedure for estimating blood flow-rate with a syringe pump, it will be effectively used to monitor variations of blood circulating in extracorporeal bypass loops.

1.
E. J.
Benjamin
,
M. J.
Blaha
,
S. E.
Chiuve
,
M.
Cushman
,
S. R.
Das
,
R.
Deo
,
S. D. d.
Ferranti
,
J.
Floyd
,
M.
Fornage
,
C.
Gillespie
 et al.,
Circulation
135
,
e146
e603
(
2017
).
2.
A. H. B.
Wu
,
Scand. J. Clin. Lab. Invest., Suppl.
240
,
112
121
(
2005
).
3.
J.
Yayan
,
Vasc. Health Risk Manage.
8
,
219
223
(
2012
).
4.
Y.-I.
Cho
and
D. J.
Cho
,
Korean Circ. J.
41
,
287
295
(
2011
).
5.
J.
Danesh
,
R.
Collins
,
R.
Peto
, and
G. D. O.
Lowe
,
Eur. Heart J.
21
,
515
520
(
2000
).
6.
C.
Rainer
,
D. T.
Kawanishi
,
P. A. N.
Chandraratna
,
R. M.
Bauersachs
,
C. L.
Reid
,
S. H.
Rahimtoola
, and
H. J.
Meiselman
,
Circulation
76
,
15
20
(
1987
).
7.
G.
Lowe
,
A.
Rumley
,
J.
Norrie
,
L.
Ford
,
J.
Shepherd
,
S.
Cobbe
,
P.
Macfarlane
, and
C.
Packard
,
Thromb. Haemostasis
84
,
553
558
(
2000
).
8.
Y. J.
Kang
,
E.
Yeom
, and
S.-J.
Lee
,
Anal. Chem.
85
,
10503
10511
(
2013
).
9.
G. A. M.
Pop
,
L. L. A.
Sisschops
,
B.
Iliev
,
P. C.
Struijk
,
J. G. v. d.
Heven
, and
C. W. E.
Hoedemaekers
,
Biosens. Bioelectron.
41
,
595
601
(
2013
).
10.
H.
Kim
,
Y. I.
Cho
,
D.-H.
Lee
,
C.-M.
Park
,
H.-W.
Moon
,
M.
Hur
,
J. Q.
Kim
, and
Y.-M.
Yun
,
Clin. Biochem.
46
,
139
142
(
2013
).
11.
Y. J.
Kang
and
S.
Yang
,
Microfluid. Nanofluid.
14
,
657
668
(
2013
).
12.
G.
Tomaiuolo
,
M.
Barra
,
V.
Preziosi
,
A.
Cassinese
,
B.
Rotoli
, and
S.
Guido
,
Lab Chip
11
,
449
454
(
2011
).
13.
B.
Rosencranz
and
S. A.
Bogen
,
Am. J. Clin. Pathol.
125
,
S78
S86
(
2006
).
14.
Y. J.
Kang
,
Y.-R.
Ha
, and
S.-J.
Lee
,
Anal. Chem.
88
,
2912
2922
(
2016
).
15.
Y. J.
Kang
,
M. G.
Kim
,
K. H.
Son
,
C. H.
Lim
,
H. S.
Son
,
S. Y.
Yoon
,
H. S.
Kwon
, and
S.
Yang
,
Artif. Organs
34
,
E103
E109
(
2010
).
16.
S. S.
Shevkoplyas
,
T.
Yoshida
,
S. C.
Gifford
, and
M. W.
Bitensky
,
Lab Chip
6
,
914
920
(
2006
).
17.
H. W.
Hou
,
A. A. S.
Bhagat
,
A. G. L.
Chong
,
P.
Mao
,
K. S. W.
Tan
,
J.
Han
, and
C. T.
Lim
,
Lab Chip
10
,
2605
2613
(
2010
).
18.
J. P.
Shelby
,
J.
White
,
K.
Ganesan
,
P. K.
Rathod
, and
D. T.
Chiu
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
14618
14622
(
2003
).
20.
X.
Xu
,
L.
Yu
, and
Z.
Chen
,
Ann. Biomed. Eng.
38
,
3210
3217
(
2010
).
21.
Z.
Isiksacan
,
O.
Erel
, and
C.
Elbuken
,
Lab Chip
16
,
4682
4690
(
2016
).
22.
K.
Cha
,
E. F.
Brown
, and
D. W.
Wilmore
,
Physiol. Meas.
15
,
499
508
(
1994
).
23.
A.
Zhbanov
and
S.
Yang
,
PLoS One
10
,
e0129337
(
2015
).
24.
T. L.
Fabry
,
Blood
70
,
1572
1576
(
1987
).
25.
G. A.
Pop
,
Z.-Y.
Chang
,
C. J.
Slager
,
B.-J.
Kooij
,
E. D. v.
Deel
,
L.
Moraru
,
J.
Quak
,
G. C.
Meijer
, and
D. J.
Duncker
,
Biosens. Bioelectron.
19
,
1685
1693
(
2004
).
26.
H. Y.
Lee
,
C.
Barber
,
J. A.
Rogers
, and
A. R.
Minerick
,
Electrophoresis
36
,
978
985
(
2015
).
27.
D. A.
Fedosov
,
B.
Caswell
,
A. S.
Popel
, and
G. E.
Karniadakis
,
Microcirculation
17
,
615
628
(
2010
).
28.
S.
Kim
,
R. L.
Kong
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
,
Am. J. Physiol. Heart Circ. Physiol.
293
,
H1526
H1535
(
2007
).
29.
R.
Fahraeus
and
T.
Lindqvist
,
Am. J. Physiol.
96
,
562
568
(
1931
).
30.
J. H.
Barbee
and
G. R.
Cokelet
,
Microvasc. Res.
3
,
6
16
(
1971
).
31.
G.
Metry
,
M.
Spittle
,
S.
Rahmati
,
C.
Giller
,
A.
Giller
,
A.
Kaufman
,
D.
Schneditz
,
E.
Manno
,
Z.
Brener
,
I.
Boniece
 et al.,
Am. J. Kidney Dis.
40
,
996
1004
(
2002
).
32.
C. B.
Ahn
,
Y. J.
Kang
,
M. G.
Kim
,
S.
Yang
,
C. H.
Lim
,
H. S.
Son
,
J. S.
Kim
,
S. Y.
Lee
,
K. H.
Son
, and
K.
Sun
,
Korean J. Thorac. Cardiovasc. Surg.
49
,
145
150
(
2016
).
33.
K.-H.
Nam
,
E.
Yeom
, and
S. J.
Lee
,
Microvasc. Res.
83
,
372
375
(
2012
).
34.
Z.
Han
,
X.
Tang
, and
B.
Zheng
,
J. Micromech. Microeng.
17
,
1828
1834
(
2007
).
35.
Y. J.
Kang
,
S. Y.
Yoon
,
K.-H.
Lee
, and
S.
Yang
,
Artif. Organs
34
,
944
949
(
2010
).
36.
B. J.
Kim
,
S. Y.
Lee
,
S.
Jee
,
A.
Atajanov
, and
S.
Yang
,
Sensors
17
,
1442
(
2017
).
37.
M.
Kim
and
S.
Yang
,
Appl. Phys. Lett.
104
,
153508
(
2014
).
38.
M.
Kim
,
A.
Kim
,
S.
Kim
, and
S.
Yang
,
Biosens. Bioelectron.
35
,
416
420
(
2012
).
39.
S.
Shin
,
J. X.
Hou
, and
J.-S.
Suh
,
Korea-Aust. Rheol. J.
19
,
61
66
(
2007
).
40.
Y. J.
Kang
,
J.
Ryu
, and
S.-J.
Lee
,
Biomicrofluidics
7
,
044106
(
2013
).
41.
Y. J.
Kang
,
E.
Yeom
, and
S.-J.
Lee
,
Biomicrofluidics
7
,
054111
(
2013
).
42.
E.
Yeom
,
Y. J.
Kang
, and
S. J.
Lee
,
Sci. Rep.
5
,
11064
(
2015
).
43.
Y. J.
Kang
,
Analyst
141
,
6583
6597
(
2016
).
44.
Y. J.
Kang
,
E.
Yeom
,
E.
Seo
, and
S.-J.
Lee
,
Biomicrofluidics
8
,
014102
(
2014
).
45.
Y. J.
Kang
and
S.
Yang
,
Lab Chip
12
,
1881
1889
(
2012
).
46.
Y. J.
Kang
and
S.-J.
Lee
,
Biomicrofluidics
7
,
054122
(
2013
).
47.
J.
Lee
and
A.
Tripathi
,
Anal. Chem.
77
,
7137
7147
(
2005
).
48.
O. K.
Baskurt
,
O. K.
Baskurt
, and
H. J.
Meiselman
,
IEEE Trans. Biomed. Eng.
57
,
969
978
(
2010
).
49.
Y. J.
Kang
,
Y.-R.
Ha
, and
S.-J.
Lee
,
Biomicrofluidics
8
,
044114
(
2014
).
50.
P.
Guillot
,
T.
Moulin
,
R.
Kotitz
,
M.
Guirardel
,
A.
Dodge
,
M.
Joanicot
,
A.
Colin
,
C.-H.
Bruneau
, and
T.
Colin
,
Microfluid. Nanofluid.
5
,
619
630
(
2008
).
51.
D. E.
Solomon
and
S. A.
Vanapalli
,
Microfluid. Nanofluid.
16
,
677
690
(
2014
).
52.
C. J.
Bourdon
,
M. G.
Olsen
, and
A. D.
Gorby
,
Trans. ASME - J. Fluid Eng.
128
,
883
886
(
2006
).
53.
E.
Yeom
,
Y. J.
Kang
, and
S.-J.
Lee
,
Biomicrofluidics
8
,
034110
(
2014
).

Supplementary Material

You do not currently have access to this content.