Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular system, renal tubules or excretory ducts, cells are submitted to a strong curvature and confinement effects in addition to flow. Then, small tubes with change in diameter are submitted to a local gradient of shear stress and curvature, which may lead to complex mechanotransduction responses along tubes, and may be involved in the onset or propagation of cystic or obstructive pathologies. We describe here a simple method to build a microfluidic device that integrates cylindrical channels with changes in diameter that mimic in vivo tube geometries. This microfabrication approach is based on molding of etched tungsten wires, which can achieve on a flexible way any change in diameter in a polydimethylsiloxane (PDMS) microdevice. The interest of this biomimetic multitube system has been evidenced by reproducing renal tubules on chip. In particular, renal cell lines were successfully seeded and grown in PDMS circular tubes with a transition between 80 μm and 50 μm diameters. Thanks to this biomimetic platform, the effect of the tube curvature has been investigated especially regarding cell morphology and orientation. The effect of shear stress on confluent cells has also been assessed simultaneously in both parts of tubes. It is thus possible to study interconnected cell response to differential constraints which is of central importance when mimicking tubes present in the organism.

1.
D. J.
Andrew
and
A. J.
Ewald
, “
Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration
,”
Dev. Biol.
341
,
34
55
(
2010
).
2.
M. M.
Zegers
,
L. E.
O'Brien
,
W.
Yu
,
A.
Datta
, and
K. E.
Mostov
, “
Epithelial polarity and tubulogenesis in vitro
,”
Trends Cell Biol.
13
,
169
176
(
2003
).
3.
F.
Martin-Belmonte
and
A. E.
Rodriguez-Fraticelli
, “
Chapter 3: Acquisition of membrane polarity in epithelial tube formation patterns, signaling pathways, molecular mechanisms, and disease
,”
Int. Rev. Cell Mol. Biol.
274
,
129
182
(
2009
).
4.
R. J.
Metzger
,
O. D.
Klein
,
G. R.
Martin
, and
M. A.
Krasnow
, “
The branching programme of mouse lung development
,”
Nature
453
,
745
750
(
2008
).
5.
M. A.
Knepper
,
R. A.
Danielson
,
G. M.
Saidel
, and
R. S.
Post
, “
Quantitative analysis of renal medullary anatomy in rats and rabbits
,”
Kidney Int.
12
,
313
323
(
1977
).
6.
R.
Salomon
,
S.
Saunier
, and
P.
Niaudet
, “
Nephronophthisis
,”
Pediatr. Nephrol.
24
,
2333
2344
(
2009
).
7.
F.
Hildebrandt
,
R.
Waldherr
,
R.
Kutt
, and
M.
Brandis
, “
The nephronophthisis complex: Clinical and genetic aspects
,”
Clin. Invest.
70
,
802
808
(
1992
).
8.
F.
Kotsis
,
C.
Boehlke
, and
E. W.
Kuehn
, “
The ciliary flow sensor and polycystic kidney disease
,”
Nephrol., Dial., Transplant.
28
,
518
526
(
2013
).
9.
A.
Patel
and
E.
Honore
, “
Polycystins and renovascular mechanosensory transduction
,”
Nat. Rev. Nephrol.
6
,
530
538
(
2010
).
10.
V.
Patel
 et al., “
Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia
,”
Hum. Mol. Genet.
17
,
1578
1590
(
2008
).
11.
T.
Weimbs
, “
Polycystic kidney disease and renal injury repair: Common pathways, fluid flow, and the function of polycystin-1
,”
Am. J. Physiol. Renal Physiol
293
,
F1423
F1432
(
2007
).
12.
H. G.
Yevick
,
G.
Duclos
,
I.
Bonnet
, and
P.
Silberzan
, “
Architecture and migration of an epithelium on a cylindrical wire
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
5944
5949
(
2015
).
13.
A. I.
Teixeira
,
G. A.
Abrams
,
P. J.
Bertics
,
C. J.
Murphy
, and
P. F.
Nealey
, “
Epithelial contact guidance on well-defined micro- and nanostructured substrates
,”
J. Cell Sci.
116
,
1881
1892
(
2003
).
14.
J. N.
Hanson
 et al., “
Textural guidance cues for controlling process outgrowth of mammalian neurons
,”
Lab Chip
9
,
122
131
(
2009
).
15.
E.
Martinez
,
E.
Engel
,
J. A.
Planell
, and
J.
Samitier
, “
Effects of artificial micro- and nano-structured surfaces on cell behaviour
,”
Ann. Anat.
191
,
126
135
(
2009
).
16.
M.
Thery
, “
Micropatterning as a tool to decipher cell morphogenesis and functions
,”
J. Cell Sci.
123
,
4201
4213
(
2010
).
17.
S. R.
Vedula
 et al., “
Emerging modes of collective cell migration induced by geometrical constraints
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
12974
12979
(
2012
).
18.
W.
Xi
,
S.
Sonam
,
T.
Beng Saw
,
B.
Ladoux
, and
C.
Teck Lim
, “
Emergent patterns of collective cell migration under tubular confinement
,”
Nat. Commun.
8
,
1517
(
2017
).
19.
C.
Hahn
and
M. A.
Schwartz
, “
Mechanotransduction in vascular physiology and atherogenesis
,”
Nat. Rev. Mol. Cell Biol.
10
,
53
62
(
2009
).
20.
A. M.
Malek
and
S.
Izumo
, “
Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress
,”
J. Cell Sci.
109
(
Pt 4
),
713
726
(
1996
).
21.
C. K.
Thodeti
 et al., “
TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling
,”
Circ. Res.
104
,
1123
1130
(
2009
).
22.
Y.
Duan
 et al., “
Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
11418
11423
(
2008
).
23.
D.
Verma
 et al., “
Interplay between cytoskeletal stresses and cell adaptation under chronic flow
,”
PLoS One
7
,
e44167
(
2012
).
24.
E.
Fischer
 et al., “
Defective planar cell polarity in polycystic kidney disease
,”
Nat. Genet.
38
,
21
23
(
2006
).
25.
L. K.
Fiddes
 et al., “
A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions
,”
Biomaterials
31
,
3459
3464
(
2010
).
26.
M.
Abdelgawad
 et al., “
A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS)
,”
Lab Chip
11
,
545
551
(
2011
).
27.
J. G.
Nemeno-Guanzon
 et al., “
Trends in tissue engineering for blood vessels
,”
J. Biomed. Biotechnol.
2012
,
956345
.
28.
T.
Nguyen du
,
Y. T.
Leho
, and
A. P.
Esser-Kahn
, “
Process of making three-dimensional microstructures using vaporization of a sacrificial component
,”
J. Visualized Exp.
81
,
e50459
(
2013
).
29.
N.
Diban
 et al., “
Hollow fibers of poly(lactide-co-glycolide) and poly(epsilon-caprolactone) blends for vascular tissue engineering applications
,”
Acta Biomater.
9
,
6450
6458
(
2013
).
30.
M. E.
Dolega
 et al., “
Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells
,”
PLoS One
9
,
e99416
(
2014
).
31.
E. J.
Weber
 et al., “
Development of a microphysiological model of human kidney proximal tubule function
,”
Kidney Int.
90
,
627
637
(
2016
).
32.
A.
Tourovskaia
,
M.
Fauver
,
G.
Kramer
,
S.
Simonson
, and
T.
Neumann
, “
Tissue-engineered microenvironment systems for modeling human vasculature
,”
Exp. Biol. Med.
239
,
1264
1271
(
2014
).
33.
J.
He
 et al., “
Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel
,”
Mater. Sci. Eng., C
59
,
53
60
(
2016
).
34.
M. K.
Gelber
and
R.
Bhargava
, “
Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt
,”
Lab Chip
15
,
1736
1741
(
2015
).
35.
X. Y.
Wang
 et al., “
Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template
,”
Lab Chip
14
,
2709
2716
(
2014
).
36.
K.-S.
Lee
,
R. H.
Kim
,
D.-Y.
Yang
, and
S. H.
Park
, “
Advances in 3D nano/microfabrication using two-photon initiated photopolymerization
,”
Prog. Polym. Sci.
33
,
631
681
(
2008
).
37.
S. D.
Gittard
and
R. J.
Narayan
, “
Laser direct writing of micro- and nano-scale medical devices
,”
Expert Rev. Med. Devices
7
,
343
356
(
2010
).
38.
G.
Gao
and
X.
Cui
, “
Three-dimensional bioprinting in tissue engineering and regenerative medicine
,”
Biotechnol. Lett.
38
,
203
(
2015
).
39.
S.
Coscoy
 et al., “
Molecular analysis of microscopic ezrin dynamics by two-photon FRAP
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12813
12818
(
2002
).
40.
T. D.
Perez
,
M.
Tamada
,
M. P.
Sheetz
, and
W. J.
Nelson
, “
Immediate-early signaling induced by E-cadherin engagement and adhesion
,”
J. Biol. Chem.
283
,
5014
5022
(
2008
).
41.
S. J.
Streichan
,
C. R.
Hoerner
,
T.
Schneidt
,
D.
Holzer
, and
L.
Hufnagel
, “
Spatial constraints control cell proliferation in tissues
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
5586
5591
(
2014
).
42.
C.
Kervrann
and
J.
Boulanger
, “
Optimal spatial adaptation for patch-based image denoising
,”
IEEE Trans. Image Process.
15
,
2866
2878
(
2006
).
43.
R.
Rezakhaniha
 et al., “
Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy
,”
Biomech. Model. Mechanobiol.
11
,
461
473
(
2012
).
44.
M.
Ye
 et al., “
Brain microvascular endothelial cells resist elongation due to curvature and shear stress
,”
Sci. Rep.
4
,
4681
(
2014
).
45.
L. W.
Welling
,
D. J.
Welling
,
J. W.
Holsapple
, and
A. P.
Evan
, “
Morphometric analysis of distinct microanatomy near the base of proximal tubule cells
,”
Am. J. Physiol.
253
,
F126
F140
(
1987
).
46.
H.
Takahashi-Iwanaga
,
Y.
Iwata
,
K.
Adachi
, and
T.
Fujita
, “
The histotopography and ultrastructure of the thin limb of the Henle's loop: A scanning electron microscopic study of the rat kidney
,”
Arch. Histol. Cytol.
52
(
4
),
395
405
(
1989
).
47.
J.
Rahimzadeh
 et al., “
Real-time observation of flow-induced cytoskeletal stress in living cells
,”
Am. J. Physiol. Cell Physiol.
301
,
C646
C652
(
2011
).
48.
D.
Verma
,
F.
Meng
,
F.
Sachs
, and
S. Z.
Hua
, “
Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization
,”
Cell Adhes. Migr.
9
,
432
440
(
2015
).
49.
M.
Essig
,
F.
Terzi
,
M.
Burtin
, and
G.
Friedlander
, “
Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells
,”
Am. J. Physiol. Renal Physiol.
281
,
F751
F762
(
2001
).
50.
A. K.
O'Connor
 et al., “
An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue
,”
Cilia
2
,
8
(
2013
).

Supplementary Material

You do not currently have access to this content.