Acoustofluidics has a strong pedigree in microscale manipulation, with particle and cell separation and patterning arising from acoustic pressure gradients. Acoustic waveguides are a promising candidate for localizing force fields in microfluidic devices, for which computational modelling is an important design tool. Meshed finite element analysis is a popular approach for this, yet its computation time increases rapidly when complex geometries are used, limiting its usefulness. Here, we present an analytical model of the acoustic pressure field in a microchannel arising from a surface acoustic wave (SAW) boundary condition that computes in milliseconds and provide the simulation code in the supplementary material. Unlike finite element analysis, the computation time of our model is independent of microchannel or waveguide shape, making it ideal for designing and optimising microscale waveguide structures. We provide experimental validation of our model with cases including near-field acoustic patterning of microparticles from a travelling SAW and two-dimensional patterning from a standing SAW and explore the design of waveguides for localised particle or cell capture.

1.
W.
Jung
,
J.
Han
,
J. W.
Choi
, and
C. H.
Ahn
, “
Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
,”
Microelectron. Eng.
132
,
46
57
(
2015
).
2.
J.
Chen
,
J.
Li
, and
Y.
Sun
, “
Microfluidic approaches for cancer cell detection, characterization, and separation
,”
Lab Chip
12
,
1753
(
2012
).
3.
M.
Zarei
, “
Advances in point-of-care technologies for molecular diagnostics
,”
Biosens. Bioelectron.
98
,
494
506
(
2017
).
4.
A. J.
Smith
,
R. D.
O'Rorke
,
A.
Kale
,
R.
Rimsa
,
M. J.
Tomlinson
,
J.
Kirkham
,
A. G.
Davies
,
C.
Wälti
, and
C. D.
Wood
, “
Rapid cell separation with minimal manipulation for autologous cell therapies
,”
Sci. Rep.
7
,
41872
(
2017
).
5.
H.
Zhang
and
K.-K.
Liu
, “
Optical tweezers for single cells
,”
J. R. Soc. Interface
5
,
671
690
(
2008
).
6.
K.
Ramser
and
D.
Hanstorp
, “
Optical manipulation for single-cell studies
,”
J. Biophotonics
3
,
187
206
(
2010
).
7.
P. R. C.
Gascoyne
and
J.
Vykoukal
, “
Particle separation by dielectrophoresis
,”
Electrophoresis
23
,
1973
1983
(
2002
).
8.
H.
Morgan
,
M. P.
Hughes
, and
N. G.
Green
, “
Separation of submicron bioparticles by dielectrophoresis
,”
Biophys. J.
77
,
516
525
(
1999
).
9.
P. R. C.
Gascoyne
,
J.
Noshari
,
T. J.
Anderson
, and
F. F.
Becker
, “
Isolation of rare cells from cell mixtures by dielectrophoresis
,”
Electrophoresis
30
,
1388
1398
(
2009
).
10.
C.
Liu
,
T.
Stakenborg
,
S.
Peeters
, and
L.
Lagae
, “
Cell manipulation with magnetic particles toward microfluidic cytometry
,”
J. Appl. Phys.
105
,
102014
(
2009
).
11.
B. D.
Plouffe
,
S. K.
Murthy
, and
L. H.
Lewis
, “
Fundamentals and application of magnetic particles in cell isolation and enrichment: A review
,”
Rep. Prog. Phys.
78
,
16601
(
2015
).
12.
V.
Narayanamurthy
,
S.
Nagarajan
,
A. Y. F.
Khan
,
F.
Samsuri
, and
T. M.
Sridhar
, “
Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications
,”
Anal. Methods
9
,
3751
3772
(
2017
).
13.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
, “
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
,”
Biomicrofluidics
7
,
021501
(
2013
).
14.
L.
Hajba
and
A.
Guttman
, “
Circulating tumor-cell detection and capture using microfluidic devices
,”
Trends Anal. Chem.
59
,
9
16
(
2014
).
15.
I.
Leibacher
,
P.
Reichert
, and
J.
Dual
, “
Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis
,”
Lab Chip
15
,
2896
2905
(
2015
).
16.
M.
Antfolk
,
C.
Magnusson
,
P.
Augustsson
,
H.
Lilja
, and
T.
Laurell
, “
Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells
,”
Anal. Chem.
87
,
9322
9328
(
2015
).
17.
J. T.
Karlsen
,
H.
Su
,
H.
Bruus
,
J.
Voldman
, and
P.
Augustsson
, “
Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping
,”
Nat. Commun.
7
,
11556
(
2016
).
18.
D.
Ahmed
,
T.
Baasch
,
N.
Blondel
,
N.
Läubli
,
J.
Dual
, and
B. J.
Nelson
, “
Neutrophil-inspired propulsion in a combined acoustic and magnetic field
,”
Nat. Commun.
8
,
770
(
2017
).
19.
P.
Mishra
,
M.
Hill
, and
P.
Glynne-Jones
, “
Deformation of red blood cells using acoustic radiation forces
,”
Biomicrofluidics
8
,
034109
(
2014
).
20.
A. E.
Christakou
,
M.
Ohlin
,
B.
Önfelt
, and
M.
Wiklund
, “
Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells
,”
Lab Chip
15
,
3222
3231
(
2015
).
21.
R.
O'Rorke
,
C.
Wood
,
C.
Walti
,
S. D.
Evans
,
A. G.
Davies
, and
J. E.
Cunningham
, “
Acousto-microfluidics: Trapping and transporting microbubbles using surface acoustic waves
,” in
IEEE International Ultrasonics Symposium
(
2012
).
22.
C. D.
Wood
,
J. E.
Cunningham
,
R.
O'Rorke
,
C.
Wälti
,
E. H.
Linfield
,
A. G.
Davies
, and
S. D.
Evans
, “
Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves
,”
Appl. Phys. Lett.
94
,
054101
(
2009
).
23.
D. J.
Collins
,
C.
Devendran
,
Z.
Ma
,
J. W.
Ng
,
A.
Neild
, and
Y.
Ai
, “
Acoustic tweezers via sub-time-of-flight regime surface acoustic waves
,”
Sci. Adv.
2
,
e1600089
(
2016
).
24.
L.
Tian
,
N.
Martin
,
P. G.
Bassindale
,
A. J.
Patil
,
M.
Li
,
A.
Barnes
,
B. W.
Drinkwater
, and
S.
Mann
, “
Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning
,”
Nat. Commun.
7
,
13068
(
2016
).
25.
I.
Bernard
,
A. A.
Doinikov
,
P.
Marmottant
,
D.
Rabaud
,
C.
Poulain
, and
P.
Thibault
, “
Controlled rotation and translation of spherical particles or living cells by surface acoustic waves
,”
Lab Chip
17
,
2470
2480
(
2017
).
26.
D. J.
Collins
,
T.
Alan
, and
A.
Neild
, “
Particle separation using virtual deterministic lateral displacement (vDLD)
,”
Lab Chip
14
,
1595
1603
(
2014
).
27.
Z.
Ma
,
D. J.
Collins
, and
Y.
Ai
, “
Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave
,”
Anal. Chem.
88
,
5316
5323
(
2016
).
28.
Z.
Ma
,
D. J.
Collins
,
J.
Guo
, and
Y.
Ai
, “
Mechanical properties based particle separation via traveling surface acoustic wave
,”
Anal. Chem.
88
,
11844
11851
(
2016
).
29.
J.
Behrens
,
S.
Langelier
,
A. R.
Rezk
,
G.
Lindner
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Microscale anechoic architecture: Acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves
,”
Lab Chip
15
,
43
46
(
2015
).
30.
P.
Rogers
and
A.
Neild
, “
Selective particle trapping using an oscillating microbubble
,”
Lab Chip
11
,
3710
3715
(
2011
).
31.
Y.
Xu
,
A.
Hashmi
,
G.
Yu
,
X.
Lu
,
H. J.
Kwon
,
X.
Chen
, and
J.
Xu
, “
Microbubble array for on-chip worm processing
,”
Appl. Phys. Lett.
102
,
023702
(
2013
).
32.
M. A.
Faridi
,
H.
Ramachandraiah
,
I.
Iranmanesh
,
D.
Grishenkov
,
M.
Wiklund
, and
A.
Russom
, “
MicroBubble activated acoustic cell sorting
,”
Biomed. Microdevices
19
,
23
(
2017
).
33.
C.
Wang
,
S. V.
Jalikop
, and
S.
Hilgenfeldt
, “
Size-sensitive sorting of microparticles through control of flow geometry
,”
Appl. Phys. Lett.
99
,
034101
(
2011
).
34.
D. J.
Collins
,
B.
Morahan
,
J.
Garcia-Bustos
,
C.
Doerig
,
M.
Plebanski
, and
A.
Neild
, “
Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves
,”
Nat. Commun.
6
,
8686
(
2015
).
35.
D. J.
Collins
,
Z.
Ma
, and
Y.
Ai
, “
Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields
,”
Anal. Chem.
88
,
5513
5522
(
2016
).
36.
D. J.
Collins
,
A.
Neild
, and
Y.
Ai
, “
Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting
,”
Lab Chip
16
,
471
479
(
2016
).
37.
A.
Riaud
,
M.
Baudoin
,
O. B.
Matar
,
L.
Becerra
, and
J.
Thomas
, “
Selective manipulation of microscopic particles with precursor swirling Rayleigh waves
,”
Phys. Rev. Appl.
7
,
024007
(
2017
).
38.
J. W.
Ng
,
C.
Devendran
, and
A.
Neild
, “
Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW)
,”
Lab Chip
17
,
3489
3497
(
2017
).
39.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
522
(
2016
).
40.
A.
Marzo
,
S. A.
Seah
,
B. W.
Drinkwater
,
D. R.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
41.
A.
Franklin
,
A.
Marzo
,
R.
Malkin
, and
B. W.
Drinkwater
, “
Three-dimensional ultrasonic trapping of micro-particles in water with a simple and compact two-element transducer
,”
Appl. Phys. Lett.
111
,
094101
(
2017
).
42.
G.
Memoli
,
M.
Caleap
,
M.
Asakawa
,
D. R.
Sahoo
,
B. W.
Drinkwater
, and
S.
Subramanian
, “
Metamaterial bricks and quantization of meta-surfaces
,”
Nat. Commun.
8
,
14608
(
2017
).
43.
R.
Wilson
,
J.
Reboud
,
Y.
Bourquin
,
S. L.
Neale
,
Y.
Zhang
, and
J. M.
Cooper
, “
Phononic crystal structures for acoustically driven microfluidic manipulations
,”
Lab Chip
11
,
323
328
(
2011
).
44.
Y.
Bian
,
F.
Guo
,
S.
Yang
,
Z.
Mao
,
H.
Bachman
,
S.
Yang
,
T.
Liqiang
,
R.
Bin
,
J.
Gong
, and
X.
Guo
, “
Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics
,”
Microfluid. Nanofluid.
21
,
132
(
2017
).
45.
C.
Devendran
,
T.
Albrecht
,
J.
Brenker
,
T.
Alan
, and
A.
Neild
, “
The importance of travelling wave components in standing surface acoustic wave (SSAW) systems
,”
Lab Chip
16
,
3756
3766
(
2016
).
46.
H.
Hu
,
L.
Zhou
,
A.
Awadallah
,
W.
Xin
, and
U.
States
, “
Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves
,”
Lab Chip
15
,
2700
2709
(
2015
).
47.
H.
Bruus
,
P.
Muller
,
R.
Barnkob
, and
M.
Jensen
, see http://static1.comsol.nl/offers/conference2012papers/papers/file/id/13794/file/bruus_abstract.pdf for “
COMSOL analysis of acoustic streaming and microparticle acoustophoresis
,” in
Proceedings of the 2012 COMSOL Conference
, Milano (
2012
), pp.
2
5
.
48.
P. B.
Muller
,
R.
Barnkob
,
M. J. H.
Jensen
, and
H.
Bruus
, “
A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces
,”
Lab Chip
12
,
4617
(
2012
).
49.
F.
Guo
,
Z.
Mao
,
Y.
Chen
,
Z.
Xie
,
J. P.
Lata
,
P.
Li
,
L.
Ren
,
J.
Liu
,
J.
Yang
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
, “
Three-dimensional manipulation of single cells using surface acoustic waves
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
1522
1527
(
2016
).
50.
P.
Hahn
,
A.
Lamprecht
, and
J.
Dual
, “
Numerical simulation of micro-particle rotation by the acoustic viscous torque
,”
Lab Chip
16
,
4581
4594
(
2016
).
51.
P.
Hahn
,
I.
Leibacher
,
T.
Baasch
, and
J.
Dual
, “
Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles
,”
Lab Chip
15
,
4302
4313
(
2015
).
52.
S.
Mellin
and
G.
Nordin
, “
Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design
,”
Opt. Express
8
,
705
(
2001
).
53.
H.
Bruus
, “
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
,”
Lab Chip
12
,
20
28
(
2012
).
54.
C.
Devendran
,
D. J.
Collins
,
Y.
Ai
, and
A.
Neild
, “
Huygens-Fresnel acoustic interference and the development of robust time-averaged patterns from traveling surface acoustic waves
,”
Phys. Rev. Lett.
118
,
154501
(
2017
).
55.
D. J.
Collins
,
B. L.
Khoo
,
Z.
Ma
,
A.
Winkler
,
R.
Weser
,
H.
Schmidt
,
J.
Han
, and
Y.
Ai
, “
Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming
,”
Lab Chip
17
,
1769
1777
(
2017
).
56.
A.
Winkler
,
R.
Brünig
,
C.
Faust
,
R.
Weser
, and
H.
Schmidt
, “
Towards efficient surface acoustic wave (SAW)-based microfluidic actuators
,”
Sens. Actuators, A
247
,
259
268
(
2016
).
57.
G.
Destgeer
,
B. H.
Ha
,
J.
Park
,
J. H.
Jung
,
A.
Alazzam
, and
H. J.
Sung
, “
Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves
,”
Anal. Chem.
87
,
4627
4632
(
2015
).
58.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
, “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
506
(
2007
).
59.
L.
Schmid
,
D. A.
Weitz
, and
T.
Franke
, “
Sorting drops and cells with acoustics: Acoustic microfluidic fluorescence-activated cell sorter
,”
Lab Chip
14
,
3710
3718
(
2014
).
60.
T.
Franke
,
S.
Braunmüller
,
L.
Schmid
,
A.
Wixforth
, and
D. A.
Weitz
, “
Surface acoustic wave actuated cell sorting (SAWACS)
,”
Lab Chip
10
,
789
(
2010
).

Supplementary Material

You do not currently have access to this content.