Label-free separation of viable cancer cells using vortical microfluidic flows has been introduced as a feasible cell collection method in oncological studies. Besides the clinical importance, the physics of particle interactions with the vortex that forms in a wall-confined geometry of a microchannel is a relatively new area of fluid dynamics. In our previous work [Haddadi and Di Carlo, J. Fluid. Mech. 811, 436–467 (2017)], we have introduced distinct aspects of inertial flow of dilute suspensions over cavities in a microchannel such as breakdown of the separatrix and formation of stable limit cycle orbits for finite size polystyrene particles. In this work, we extend our experiments to address the engineering-physics of cancer cell entrapment in microfluidic cavities. We begin by studying the effects of the channel width and device height on the morphology of the vortex, which has not been discussed in our previous work. The stable limit cycle orbits of finite size cancer cells are then presented. We demonstrate effects of the separatrix breakdown and the limit cycle formation on the operation of the cancer cell separation platform. By studying the flow of dilute cell suspensions over the cavities, we further develop the notion of the cavity capacity and the relative rate of cell accumulation as optimization criteria which connect the device geometry with the flow. Finally, we discuss the proper placement of multiple cavities inside a microchannel for improved cell entrapment.

1.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
,
022206
(
2011
).
2.
M.
Dhar
,
J.
Wong
,
A.
Karimi
,
J.
Che
,
C.
Renier
,
M.
Matsumoto
,
M.
Triboulet
,
E. B.
Garon
,
J. W.
Goldman
,
M. B.
Rettig
,
S. S.
Jeffrey
,
R. P.
Kulkarni
,
E.
Sollier
, and
D.
Di Carlo
, “
High efficiency vortex trapping of circulating tumor cells
,”
Biomicrofluidics
9
,
064116
(
2015
).
3.
E.
Sollier
,
D. E.
Go
,
J.
Che
,
D. R.
Gossett
,
S. O.
Byrne
,
W. M.
Weaver
,
N.
Kummer
,
M.
Rettig
,
J.
Goldman
,
N.
Nickols
,
S.
McCloskey
,
R. P.
Kulkarni
, and
D.
Di Carlo
, “
Size-selective collection of circulating tumor cells using Vortex technology
,”
Lab Chip
14
,
63
77
(
2014
).
4.
J.
Che
,
A. J.
Mach
,
D. E.
Go
,
I.
Talati
,
Y.
Ying
,
J.
Rao
,
R. P.
Kulkarni
, and
D.
Di Carlo
, “
Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics
,”
PLoS One
8
,
e78194
(
2013
).
5.
H.
Haddadi
and
D.
Di Carlo
, “
Inertial flow of a dilute suspension over cavities in a microchannel
,”
J. Fluid Mech.
811
,
436
467
(
2017
).
6.
T.
Ashworth
, “
A case of cancer in which cells similar to those in the tumours were seen in the blood after death
,”
Aust. Med. J.
14
,
146
149
(
1869
).
7.
S.
Riethdorf
,
H.
Fritsche
, and
V.
Muller
, “
Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the cell search system
,”
Clin. Cancer Res.
13
,
920
928
(
2007
).
8.
S. L.
Stott
,
R. J.
Lee
,
S.
Nagrath
,
M.
Yu
,
D. T.
Miyamoto
,
L.
Ulkus
,
E. J.
Inserra
,
M.
Ulman
,
S.
Springer
,
Z.
Nakamura
,
A. L.
Moore
,
D. I.
Tsukrov
,
M. E.
Kempner
,
D. M.
Dahl
,
C.
Wu
,
A. J.
Iafrate
,
M. R.
Smith
,
R. G.
Tompkins
,
L. V.
Sequist
,
M.
Toner
,
D. A.
Haber
, and
S.
Maheswaran
, “
Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer
,”
Sci. Transl. Med.
2
,
25ra23
(
2010
).
9.
M.
Cristofanilli
,
G. T.
Budd
,
M. J.
Ellis
,
A.
Stopeck
,
J.
Matera
,
M. C.
Miller
,
J. M.
Reuben
,
G. V.
Doyle
,
W. J.
Allard
,
L. W.
Terstappen
, and
D. F.
Hayes
, “
Circulating tumor cells, disease progression, and survival in metastatic breast cancer
,”
N. Engl. J. Med.
351
,
781
791
(
2004
).
10.
R.
Cote
and
R. H.
Datar
,
Circulating Tumor Cells
(
Springer
,
2016
).
11.
S.
Zheng
,
H.
Lin
,
J.
Liu
,
M.
Balic
,
R.
Datar
,
R. J.
Cote
, and
Y. C.
Tai
, “
Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells
,”
J. Chromatogr. A
1162
,
154
161
(
2007
).
12.
R.
Gertler
,
R.
Rosenberg
,
K.
Fuehrer
,
M.
Dahm
,
H.
Nekarda
, and
J. R.
Siewert
, “
Detection of circulating tumor cells in blood using an optimized density gradient centrifugation
,”
Recent Results Cancer Res.
162
,
149
155
(
2003
).
13.
F. F.
Becker
,
X. B.
Wang
,
Y.
Huang
,
R.
Pethig
,
J.
Vykoukal
, and
P. R.
Gascoyne
, “
Separation of human breast cancer cells from blood by differential dielectric affinity
,”
Proc. Natl. Acad. Sci. U.S.A.
92
,
860
864
(
1995
).
14.
A. J.
Armstrong
,
M. S.
Marengo
,
S.
Oltean
,
G.
Kemeny
,
R. L.
Bitting
,
J. D.
Turnbull
,
C. I.
Herold
,
P. K.
Marcom
,
D. J.
George
, and
M. A.
Garcia-Blanco
, “
Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers
,”
Mol. Cancer Res.
9
,
997
1007
(
2011
).
15.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
,
D. W.
Bell
,
D.
Irimia
,
L.
Ulkus
,
M. R.
Smith
,
E. L.
Kwak
,
S.
Digumarthy
,
A.
Muzikansky
,
P.
Ryan
,
U. J.
Balis
,
R. G.
Tompkins
,
D. A.
Haber
, and
M.
Toner
, “
Isolation of rare circulating tumour cells in cancer patients by microchip technology
,”
Nature
450
,
1235
1239
(
2007
).
16.
N. M.
Karabacak
,
P. S.
Spuhler
,
F.
Fachin
,
E. J.
Lim
,
V.
Pai
,
E.
Ozkumur
,
J. M.
Martel
,
N.
Kojic
,
K.
Smith
,
P.
Chen
,
J.
Yang
,
H.
Hwang
,
B.
Morgan
,
J.
Trautwein
,
T. A.
Barber
,
S. L.
Stott
,
S.
Maheswaran
,
R.
Kapur
,
D. A.
Haber
, and
M.
Toner
, “
Microfluidic, marker-free isolation of circulating tumor cells from blood samples
,”
Nat. Protoc.
9
,
694
710
(
2014
).
17.
H.
Mohamed
,
L. D.
McCurdy
,
D. H.
Szarowski
,
S.
Duva
,
J. N.
Turner
, and
M.
Caggana
, “
Development of a rare cell fractionation device application for cancer detection
,”
IEEE Trans. Nanobiosci.
3
,
251
256
(
2004
).
18.
A.
Lenshof
and
T.
Laurell
, “
Emerging clinical applications of microchip-based acoustophoresis
,”
J. Lab. Autom.
16
,
443
449
(
2011
).
19.
A. A. S.
Bhagat
,
H. W.
Hou
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
, “
Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation
,”
Lab Chip
11
,
1870
1878
(
2011
).
20.
S. R.
Risbud
and
G.
Drazer
, “
Trajectory and distribution of suspended non-Brownian particles moving past a fixed spherical or cylindrical obstacle
,”
J. Fluid Mech.
714
,
213
237
(
2013
).
21.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
22.
G.
Segré
and
A.
Silberberg
, “
Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams
,”
J. Fluid Mech.
14
,
115
(
1962
).
23.
G.
Segré
and
A.
Silberberg
, “
Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation
,”
J. Fluid Mech.
14
,
136
(
1962
).
24.
J. P.
Matas
,
J. F.
Morris
, and
E.
Guazzelli
, “
Inertial migration of rigid spherical particles in Poiseuille flow
,”
J. Fluid Mech.
515
,
171
(
2004
).
25.
K.
Hood
,
S.
Lee
, and
M.
Roper
, “
Inertial migration of a rigid sphere in three-dimensional Poiseuille flow
,”
J. Fluid Mech.
765
,
452
(
2015
).
26.
D.
Di Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
,
094503
(
2009
).
27.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
18897
(
2007
).
28.
H.
Ito
,
N.
Yamaguchi
,
M.
Onimaru
,
S.
Kimura
,
T.
Ohmori
,
F.
Ishikawa
,
J.
Sato
,
S.
Ito
, and
H.
Inoue
, “
Change in number and size of circulating tumor cells with high telomerase activity during treatment of patients with gastric cancer
,”
Oncol. Lett.
12
,
4720
4726
(
2016
).
29.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
,
912
920
(
2011
).
30.
D. R.
Gossett
,
T. K.
Henry
,
S. A.
Lee
,
Y.
Ying
,
A. G.
Lindgren
,
O.
Yang
,
J.
Rao
,
A. T.
Clark
, and
D.
Di Carlo
, “
Hydrodynamic stretching of single cells for large population mechanical phenotyping
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
7630
7635
(
2012
).
31.
K.
Goda
,
A.
Ayazi
,
D. R.
Gossett
,
J.
Sadasivam
,
C. K.
Lonappan
,
E.
Sollier
,
A.
Fard
,
S. C.
Hur
,
J.
Adam
,
C.
Murray
,
C.
Wang
,
N.
Brackbill
,
D.
Di Carlo
, and
B.
Jalali
, “
High-throughput single-microparticle imaging flow analyzer
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
11630
11635
(
2012
).
32.
H.
Amini
,
E.
Sollier
,
M.
Masaeli
,
Y.
Xie
,
B.
Ganapathysubramanian
,
H. A.
Stone
, and
D.
Di Carlo
, “
Engineering fluid flow using sequenced microstructures
,”
Nat. Commun.
4
,
1826
(
2013
).
33.
M.
Horner
,
G.
Metcalfe
,
S.
Wiggins
, and
J. M.
Ottino
, “
Transport enhancement mechanisms in open cavities
,”
J. Fluid Mech.
452
,
199
(
2002
).
34.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. A. J.
Schueller
, and
G. M.
Whitesides
, “
Fabrication of microfluidic systems in poly(dimethylsiloxane)
,”
Electrophoresis
21
,
27
40
(
2000
).
35.
H.
Haddadi
,
S.
Shojaei-Zadeh
, and
J. F.
Morris
, “
Lattice-Boltzmann simulation of inertial particle-laden flow around an obstacle
,”
Phys. Rev. Fluids
1
,
024201
(
2016
).
36.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
37.
E.
Sollier
,
C.
Murray
,
P.
Maoddi
, and
D.
Di Carlo
, “
Rapid prototyping polymers for microfluidic devices and high pressure injections
,”
Lab Chip
11
,
3752
3765
(
2011
).
38.
R.
Khojah
,
R.
Stoutamore
, and
D.
Di Carlo
, “
Size-tunable microvortex capture of rare cells
,”
Lab Chip
17
,
2542
2549
(
2017
).
39.
T.
Kruger
,
B.
Kaoui
, and
J.
Harting
, “
Interplay of inertia and deformability on rheological properties of a suspension of capsules
,”
J. Fluid Mech.
751
,
725
(
2014
).
40.
R. M.
MacMeccan
,
J. R.
Clausen
,
G. P.
Neitzel
, and
C. K.
Aidun
, “
Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method
,”
J. Fluid Mech.
618
,
13
(
2009
).
41.
K.
Vahidkhah
,
S. L.
Diamond
, and
P.
Bagchi
, “
Platelet dynamics in three-dimensional simulation of whole blood
,”
Biophys. J.
106
,
2529
(
2014
).
42.
A.
Kumar
and
M. D.
Graham
, “
Margination and segregation in confined flows of blood and other multicomponent suspensions
,”
Soft Matter
8
,
10536
(
2012
).
You do not currently have access to this content.