An ion concentration polarization (ICP)-based electrokinetic concentration device is used for accelerating the surface hybridization reaction between exosomal microRNAs (miRNAs) and morpholinos (MOs) as a synthetic oligo capture probe in the nanomolar concentration range in a microfluidic channel. Compared with standard hybridization at the same concentration, the hybridization time of the miRNA target on MO capture probes could be reduced from ∼24 h to 30 min, with an increase in detection speed by 48 times. This ICP-enhanced hybridization method not only significantly decreases the detection time but also makes workflow simple to use, circumventing use of quantitative reverse transcription polymerase chain reaction or other conventional enzyme-based amplification methods that can cause artifacts.

1.
K. W.
Hon
,
N.
Abu
,
N.-S.
Ab Mutalib
, and
R.
Jamal
,
Front. Pharmacol.
8
,
583
(
2017
).
2.
A. V.
Vlassov
,
S.
Magdaleno
,
R.
Setterquist
, and
R.
Conrad
,
Biochim. Biophys. Acta - Gen. Subj.
1820
,
940
(
2012
).
3.
N.
Habbe
,
J. B. M.
Koorstra
,
J. T.
Mendell
,
G. J.
Offerhaus
,
K. R.
Ji
,
G.
Feldmann
,
M. E.
Mullendore
,
M. G.
Goggins
,
S. M.
Hong
, and
A.
Maitra
,
Cancer Biol. Ther.
8
,
340
(
2009
).
4.
A.
Egatz-Gomez
,
C.
Wang
,
F.
Klacsmann
,
Z.
Pan
,
S.
Marczak
,
Y.
Wang
,
G.
Sun
,
S.
Senapati
, and
H. C.
Chang
,
Biomicrofluidics
10
,
032902
(
2016
).
5.
S.
Senapati
,
S.
Basuray
,
Z.
Slouka
,
L. J.
Cheng
, and
H. C.
Chang
,
Top. Curr. Chem.
304
,
153
(
2011
).
6.
T. C.
Lorenz
,
J. Visualized Exp.
63
,
4
14
(
2012
).
7.
C. A.
Raabe
,
T.-H.
Tang
,
J.
Brosius
, and
T. S.
Rozhdestvensky
,
Nucl. Acids Res.
42
,
1414
(
2014
).
8.
J.
Dabney
and
M.
Meyer
,
Biotechniques
52
,
87
(
2012
).
9.
W. R.
Swindell
,
X.
Xing
,
J. J.
Voorhees
,
J. T.
Elder
,
A.
Johnston
, and
J. E.
Gudjonsson
,
Physiol. Genomics
46
,
533
(
2014
).
10.
D.
Taller
,
K.
Richards
,
Z.
Slouka
,
S.
Senapati
,
R.
Hill
,
D. B.
Go
, and
H.-C.
Chang
,
Lab Chip
15
,
1656
(
2015
).
11.
S. C.
Chapin
and
P. S.
Doyle
,
Anal. Chem.
83
,
7179
(
2011
).
12.
D. W.
Wegman
and
S. N.
Krylov
,
Angew. Chem., Int. Ed.
50
,
10335
(
2011
).
13.
J. M.
Goldman
,
L. A.
Zhang
,
A.
Manna
,
B. A.
Armitage
,
D. H.
Ly
, and
J. W.
Schneider
,
Biomacromolecules
14
,
2253
(
2013
).
14.
G.
Sun
,
Z.
Pan
,
S.
Senapati
, and
H. C.
Chang
,
Phys. Rev. Appl.
7
,
064024
(
2017
).
15.
D.
Martins
,
R.
Levicky
, and
Y. A.
Song
,
Biosens. Bioelectron.
72
,
87
(
2015
).
16.
N.
Tercero
,
K.
Wang
,
P.
Gong
, and
R.
Levicky
,
J. Am. Chem. Soc.
131
,
4953
(
2009
).
17.
W.
Qiao
,
S.
Kalachikov
,
Y.
Liu
, and
R.
Levicky
,
Anal. Biochem.
434
,
207
(
2013
).
18.
S.
Karkare
and
D.
Bhatnagar
,
Appl. Microbiol. Biotechnol.
71
,
575
(
2006
).
19.
X.
Wang
and
S.
Smirnov
,
ACS Nano
3
,
1004
(
2009
).
20.
R.
Huang
,
Y.
Liao
,
X.
Zhou
,
Y.
Fu
, and
D.
Xing
,
Sens. Actuators, B
247
,
505
(
2017
).
21.
P.
Gong
,
K.
Wang
, and
Y.
Liu
,
J. Am. Chem. Soc.
132
,
9663
(
2010
).
22.
M.
Chastain
and
I.
Tinoco
,
Prog. Nucl. Acid Res. Mol. Biol.
41
,
131
(
1991
).
23.
D.
Rentzeperis
,
K.
Alessi
, and
L. A.
Marky
,
Nucl. Acids Res.
21
,
2683
(
1993
).
24.
A.
Yafe
,
S.
Etzioni
,
P.
Weisman-Shomer
, and
M.
Fry
,
Nucl. Acids Res.
33
,
2887
(
2005
).
25.
D.
Martins
,
X.
Wei
,
R.
Levicky
, and
Y. A.
Song
,
Anal. Chem.
88
,
3539
(
2016
).
26.
G.
Lautner
and
R. E.
Gyurcsányi
,
Electroanalysis
26
,
1224
(
2014
).

Supplementary Material

You do not currently have access to this content.