Circulating tumor cells (CTCs) have shown potential for cancer diagnosis and prognosis. Affinity-based CTC isolation methods have been proved to be efficient for CTC detection in clinical blood samples. One of the popular choices for affinity-based CTC isolation is to immobilize capture agents onto an array of microposts in microchannels, providing high CTC capture efficiency due to enhanced interactions between tumor cells and capture agents on the microposts. However, how the cells interact with microposts under different flow conditions and what kind of capture pattern results from the interactions have not been fully investigated; a full understanding of these interactions will help to design devices and choose experimental conditions for higher CTC capture effeciency. We report our study on their interaction and cell distribution patterns around microposts under different flow conditions. Human acute lymphoblastic leukemia cells (CCRF-CEM) were used as target cancer cells in this study, while the Sgc8 aptamer that has specific binding with CCRF-CEM cells was employed as a capture agent. We investigated the effects of flow rates and micropost shapes on the cell capture efficiency and capture patterns on microposts. While a higher flow rate decreased cell capture efficiency, we found that the capture pattern around microposts also changed, with much more cells captured in the front half of a micropost than at the back half. We also found the ratio of cells captured on microposts to the cells captured by both microposts and channel walls increased as a function of the flow rate. We compared circular microposts with an elliptical shape and found that the geometry affected the capture distribution around microposts. In addition, we have developed a theoretical model to simulate the interactions between tumor cells and micropost surfaces, and the simulation results are in agreement with our experimental observation.

1.
M.
Cristofanilli
,
G. T.
Budd
,
M. J.
Ellis
,
A.
Stopeck
,
J.
Matera
,
M. C.
Miller
,
J. M.
Reuben
,
G. V.
Doyle
,
W. J.
Allard
,
L. W.
Terstappen
, and
D. F.
Hayes
,
N. Engl. J. Med.
351
,
781
(
2004
).
2.
D. C.
Danila
,
M.
Fleisher
, and
H. I.
Scher
,
Clin. Cancer Res.
17
(
12
),
3903
3912
(
2011
).
3.
M.
Yu
,
S.
Stott
,
M.
Toner
,
S.
Maheswaran
, and
D. A.
Haber
,
J. Cell Biol.
192
(
3
),
373
382
(
2011
).
4.
K.
Chen
and
Z.
Hugh Fan
,
Circulating Tumor Cells: Isolation and Analysis
(
John Wiley & Sons
,
2016
), pp.
33
50
.
5.
G.
Vona
,
A.
Sabile
,
M.
Louha
,
V.
Sitruk
,
S.
Romana
,
K.
Schütze
,
F.
Capron
,
D.
Franco
,
M.
Pazzagli
,
M.
Vekemans
,
B.
Lacour
,
C.
Bréchot
, and
P.
Paterlini-Bréchot
,
Am. J. Pathol.
156
(
1
),
57
63
(
2000
).
6.
P.
Pinzani
,
B.
Salvadori
,
L.
Simi
,
S.
Bianchi
,
V.
Distante
,
L.
Cataliotti
,
M.
Pazzagli
, and
C.
Orlando
,
Human Pathol.
37
(
6
),
711
718
(
2006
).
7.
I.
Desitter
,
B. S.
Guerrouahen
,
N.
Benali-Furet
,
J.
Wechsler
,
P. A.
Jaenne
,
Y.
Kuang
,
M.
Yanagita
,
L.
Wang
,
J. A.
Berkowitz
, and
R. J.
Distel
,
Anticancer Res.
31
(
2
),
427
441
(
2011
), https://www.ncbi.nlm.nih.gov/pubmed/21378321.
8.
S.
Zheng
,
H.
Lin
,
J.-Q.
Liu
,
M.
Balic
,
R.
Datar
,
R. J.
Cote
, and
Y.-C.
Tai
,
J. Chromatogr. A
1162
(
2
),
154
161
(
2007
).
9.
F.
Yang
,
X.
Yang
,
H.
Jiang
,
P.
Bulkhaults
,
P.
Wood
,
W.
Hrushesky
, and
G.
Wang
,
Biomicrofluidics
4
(
1
),
013204
(
2010
).
10.
V.
Gupta
,
I.
Jafferji
,
M.
Garza
,
V. O.
Melnikova
,
D. K.
Hasegawa
,
R.
Pethig
, and
D. W.
Davis
,
Biomicrofluidics
6
(
2
),
024133
(
2012
).
11.
D.
Peeters
,
B.
De Laere
,
G.
Van den Eynden
,
S.
Van Laere
,
F.
Rothe
,
M.
Ignatiadis
,
A.
Sieuwerts
,
D.
Lambrechts
,
A.
Rutten
, and
P.
van Dam
,
Br. J. Cancer
108
(
6
),
1358
1367
(
2013
).
12.
H.-S.
Moon
,
K.
Kwon
,
S.-I.
Kim
,
H.
Han
,
J.
Sohn
,
S.
Lee
, and
H.-I.
Jung
,
Lab Chip
11
(
6
),
1118
1125
(
2011
).
13.
E.
Ozkumur
,
A. M.
Shah
,
J. C.
Ciciliano
,
B. L.
Emmink
,
D. T.
Miyamoto
,
E.
Brachtel
,
M.
Yu
,
P-i.
Chen
,
B.
Morgan
, and
J.
Trautwein
,
Sci. Transl. Med.
5
(
179
),
179ra147
179ra147
(
2013
).
14.
N. M.
Karabacak
,
P. S.
Spuhler
,
F.
Fachin
,
E. J.
Lim
,
V.
Pai
,
E.
Ozkumur
,
J. M.
Martel
,
N.
Kojic
,
K.
Smith
,
P. I.
Chen
,
J.
Yang
,
H.
Hwang
,
B.
Morgan
,
J.
Trautwein
,
T. A.
Barber
,
S. L.
Stott
,
S.
Maheswaran
,
R.
Kapur
,
D. A.
Haber
, and
M.
Toner
,
Nat. Protoc.
9
(
3
),
694
710
(
2014
).
15.
H. W.
Hou
,
M. E.
Warkiani
,
B. L.
Khoo
,
Z. R.
Li
,
R. A.
Soo
,
D. S.-W.
Tan
,
W.-T.
Lim
,
J.
Han
,
A. A. S.
Bhagat
, and
C. T.
Lim
,
Sci. Rep.
3
,
1259
(
2013
).
16.
P.
Augustsson
,
C.
Magnusson
,
M.
Nordin
,
H.
Lilja
, and
T.
Laurell
,
Anal. Chem.
84
(
18
),
7954
7962
(
2012
).
17.
X.
Ding
,
Z.
Peng
,
S.-C. S.
Lin
,
M.
Geri
,
S.
Li
,
P.
Li
,
Y.
Chen
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
,
Proc. Nat. Acad. Sci. U. S. A.
111
(
36
),
12992
12997
(
2014
).
18.
P.
Li
,
Z.
Mao
,
Z.
Peng
,
L.
Zhou
,
Y.
Chen
,
P.-H.
Huang
,
C. I.
Truica
,
J. J.
Drabick
,
W. S.
El-Deiry
,
M.
Dao
,
S.
Suresh
, and
T. J.
Huang
,
Proc. Nat. Acad. Sci. U. S. A.
112
(
16
),
4970
4975
(
2015
).
19.
S. C. P.
Williams
,
Proc. Nat. Acad. Sci.
112
(
15
),
4509
4511
(
2015
).
20.
G.
Deng
,
S.
Krishnakumar
,
A. A.
Powell
,
H.
Zhang
,
M. N.
Mindrinos
,
M. L.
Telli
,
R. W.
Davis
, and
S. S.
Jeffrey
,
BMC Cancer
14
(
1
),
1
12
(
2014
).
21.
F.
Coumans
,
C.
Doggen
,
G.
Attard
,
J.
De Bono
, and
L.
Terstappen
,
Ann. Oncol.
21
(
9
),
1851
1857
(
2010
).
22.
T.
Fritsche
,
J.
Smith
, and
J.
Henry
,
Medical Parasitology
, 19th ed. (
WB Saunders Co
,
Philadelphia, PA, USA
,
1996
), pp.
1252
1307
.
23.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
,
D. W.
Bell
,
D.
Irimia
,
L.
Ulkus
,
M. R.
Smith
,
E. L.
Kwak
,
S.
Digumarthy
,
A.
Muzikansky
,
P.
Ryan
,
U. J.
Balis
,
R. G.
Tompkins
,
D. A.
Haber
, and
M.
Toner
,
Nature
450
(
7173
),
1235
1239
(
2007
).
24.
X.
Zheng
,
L. S.-L.
Cheung
,
J. A.
Schroeder
,
L.
Jiang
, and
Y.
Zohar
,
Lab Chip
11
(
19
),
3269
3276
(
2011
).
25.
A. A.
Adams
,
P. I.
Okagbare
,
J.
Feng
,
M. L.
Hupert
,
D.
Patterson
,
J.
Göttert
,
R. L.
McCarley
,
D.
Nikitopoulos
,
M. C.
Murphy
, and
S. A.
Soper
,
J. Am. Chem. Soc.
130
(
27
),
8633
8641
(
2008
).
26.
S.
Wang
,
H.
Wang
,
J.
Jiao
,
K. J.
Chen
,
G. E.
Owens
,
K. i.
Kamei
,
J.
Sun
,
D. J.
Sherman
,
C. P.
Behrenbruch
, and
H.
Wu
,
Angew. Chem.
121
(
47
),
9132
9135
(
2009
).
27.
V.
Murlidhar
,
M.
Zeinali
,
S.
Grabauskiene
,
M.
Ghannad-Rezaie
,
M. S.
Wicha
,
D. M.
Simeone
,
N.
Ramnath
,
R. M.
Reddy
, and
S.
Nagrath
,
Small
10
(
23
),
4895
4904
(
2014
).
28.
K.
Hoshino
,
Y.-Y.
Huang
,
N.
Lane
,
M.
Huebschman
,
J. W.
Uhr
,
E. P.
Frenkel
, and
X.
Zhang
,
Lab Chip
11
(
20
),
3449
3457
(
2011
).
29.
E. S.
Park
,
C.
Jin
,
Q.
Guo
,
R. R.
Ang
,
S. P.
Duffy
,
K.
Matthews
,
A.
Azad
,
H.
Abdi
,
T.
Todenhöfer
, and
J.
Bazov
,
Small
12
(
14
),
1909
1919
(
2016
).
30.
J.
Alvankarian
,
A.
Bahadorimehr
, and
B. Y.
Majlis
,
Biomicrofluidics
7
(
1
),
014102
(
2013
).
31.
W.
Sheng
,
O. O.
Ogunwobi
,
T.
Chen
,
J.
Zhang
,
T. J.
George
,
C.
Liu
, and
Z. H.
Fan
,
Lab Chip
14
(
1
),
89
98
(
2014
).
32.
S.
Jeon
,
J. M.
Moon
,
E. S.
Lee
,
Y. H.
Kim
, and
Y.
Cho
,
Angew. Chem.
126
(
18
),
4685
4690
(
2014
).
33.
Y. M.
Chang
,
M. J.
Donovan
, and
W.
Tan
,
J. Nucleic Acids
2013
,
817350
.
34.
D.
Van Simaeys
,
D.
Turek
,
C.
Champanhac
,
J.
Vaizer
,
K.
Sefah
,
J.
Zhen
,
R.
Sutphen
, and
W.
Tan
,
Anal. Chem.
86
(
9
),
4521
4527
(
2014
).
35.
Y.
Xu
,
J. A.
Phillips
,
J.
Yan
,
Q.
Li
,
Z. H.
Fan
, and
W.
Tan
,
Anal. Chem.
81
(
17
),
7436
7442
(
2009
).
36.
W.
Sheng
,
T.
Chen
,
R.
Kamath
,
X.
Xiong
,
W.
Tan
, and
Z. H.
Fan
,
Anal. Chem.
84
(
9
),
4199
4206
(
2012
).
37.
L.
Zhao
,
C.
Tang
,
L.
Xu
,
Z.
Zhang
,
X.
Li
,
H.
Hu
,
S.
Cheng
,
W.
Zhou
,
M.
Huang
, and
A.
Fong
,
Small
(
Weinheim an der Bergstrasse
,
Germany
) (
2016
).
38.
N. G.
Maremanda
,
K.
Roy
,
R. K.
Kanwar
,
V.
Shyamsundar
,
V.
Ramshankar
,
A.
Krishnamurthy
,
S.
Krishnakumar
, and
J. R.
Kanwar
,
Biomicrofluidics
9
(
5
),
054110
(
2015
).
39.
M.
Labib
,
B.
Green
,
R. M.
Mohamadi
,
A.
Mepham
,
S. U.
Ahmed
,
L.
Mahmoudian
,
I.-H.
Chang
,
E. H.
Sargent
, and
S. O.
Kelley
,
J. Am. Chem. Soc.
138
(
8
),
2476
2479
(
2016
).
40.
U.
Dharmasiri
,
S.
Balamurugan
,
A. A.
Adams
,
P. I.
Okagbare
,
A.
Obubuafo
, and
S. A.
Soper
,
Electrophoresis
30
(
18
),
3289
3300
(
2009
).
41.
M. N.
Dickson
,
P.
Tsinberg
,
Z.
Tang
,
F. Z.
Bischoff
,
T.
Wilson
, and
E. F.
Leonard
,
Biomicrofluidics
5
(
3
),
034119
(
2011
).
42.
J. P.
Smith
,
T. B.
Lannin
,
Y. A.
Syed
,
S. M.
Santana
, and
B. J.
Kirby
,
Biomed. Microdevices
16
(
1
),
143
151
(
2014
).
43.
Z.
Liu
,
W.
Zhang
,
F.
Huang
,
H.
Feng
,
W.
Shu
,
X.
Xu
, and
Y.
Chen
,
Biosens. Bioelectron.
47
,
113
119
(
2013
).
44.
I.
Rajta
,
R.
Huszánk
,
A. T.
Szabó
,
G. U.
Nagy
,
S.
Szilasi
,
P.
Fürjes
,
E.
Holczer
,
Z.
Fekete
,
G.
Járvás
, and
M.
Szigeti
,
Electrophoresis
37
(
3
),
498
503
(
2016
).
45.
D. J.
Howard
,
Y.-J.
Seo
,
B.
Hahm
, and
J. W.
Kwon
,
IEEE Sens. J.
14
(
1
),
5
6
(
2014
).
46.
G. D.
Chen
,
F.
Fachin
,
E.
Colombini
,
B. L.
Wardle
, and
M.
Toner
,
Lab Chip
12
(
17
),
3159
3167
(
2012
).
47.
M.
Bušík
,
I.
Jančigová
,
R.
Tóthová
, and
I.
Cimrák
,
J. Comput. Sci.
17
,
370
376
(
2016
).
48.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
,
Science
304
(
5673
),
987
990
(
2004
).
49.
D. W.
Inglis
,
J. A.
Davis
,
R. H.
Austin
, and
J. C.
Sturm
,
Lab Chip
6
(
5
),
655
658
(
2006
).
50.
D.
Qin
,
Y.
Xia
, and
G. M.
Whitesides
,
Nat. Protoc.
5
(
3
),
491
502
(
2010
).
51.
L. G.
Shapiro
and
G. C.
Stockman
,
Computer Vision
(
Prentice Hall
,
2001
), p.
137
.
52.
C.
Korn
and
U.
Schwarz
,
J. Chem. Phys.
126
(
9
),
095103
(
2007
).
53.
D.
Shangguan
,
Y.
Li
,
Z.
Tang
,
Z. C.
Cao
,
H. W.
Chen
,
P.
Mallikaratchy
,
K.
Sefah
,
C. J.
Yang
, and
W.
Tan
,
Proc. Nat. Acad. Sci.
103
(
32
),
11838
11843
(
2006
).
54.
C. B.
Korn
and
U. S.
Schwarz
,
Phys. Rev. E
77
(
4
),
041904
(
2008
).
55.
J.
Zhang
,
W.
Sheng
, and
Z. H.
Fan
,
Chem. Commun.
50
(
51
),
6722
6725
(
2014
).
56.
Y.
Chen
,
M. B.
O'Donoghue
,
Y.-F.
Huang
,
H.
Kang
,
J. A.
Phillips
,
X.
Chen
,
M.-C.
Estevez
,
C. J.
Yang
, and
W.
Tan
,
J. Am. Chem. Soc.
132
(
46
),
16559
16570
(
2010
).
57.
Y.
Chen
,
A. C.
Munteanu
,
Y. F.
Huang
,
J.
Phillips
,
Z.
Zhu
,
M.
Mavros
, and
W.
Tan
,
Chemistry
15
(
21
),
5327
5336
(
2009
).
58.
E.
Pérez-Ruiz
,
M.
Kemper
,
D.
Spasic
,
A.
Gils
,
L. J.
van Ijzendoorn
,
J.
Lammertyn
, and
M. W. J.
Prins
,
Anal. Chem.
86
(
6
),
3084
3091
(
2014
).
59.
R.
Alon
,
S.
Chen
,
K. D.
Puri
,
E. B.
Finger
, and
T. A.
Springer
,
J. Cell Biol.
138
(
5
),
1169
1180
(
1997
).
60.
M.
O'Donoghue
,
X.
Shi
,
X.
Fang
, and
W.
Tan
,
Anal. Bioanal. Chem.
402
(
10
),
3205
3209
(
2012
).
61.
M. S. S. C. R.
Dennis
, “
The steady flow of a viscous fluid past a circular cylinder
,” in
Aeronautical Research Council
(
HM Stationery Office
,
London
,
1965
).
62.
W.
Sheng
,
T.
Chen
,
W.
Tan
, and
Z. H.
Fan
,
ACS Nano
7
(
8
),
7067
7076
(
2013
).
63.
L. A.
Spielman
,
Annu. Rev. Fluid Mech.
9
(
1
),
297
319
(
1977
).
64.
R. W.
Fox
,
A. T.
McDonald
, and
P. J.
Pritchard
,
Introduction to Fluid Mechanics
(
John Wiley & Sons
,
New York
,
1998
).
65.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
66.
B.
Cichocki
and
R.
Jones
,
Phys. A
258
(
3
),
273
302
(
1998
).
67.
G.
Perkins
and
R.
Jones
,
Phys. A
189
(
3-4
),
447
477
(
1992
).

Supplementary Material

You do not currently have access to this content.