Suspensions of healthy and pathological red blood cells (RBC) flowing in microfluidic devices are frequently used to perform in vitro blood experiments for a better understanding of human microcirculation hemodynamic phenomena. This work reports the development of particulate viscoelastic analogue fluids able to mimic the rheological and hemorheological behavior of pathological RBC suspensions flowing in microfluidic systems. The pathological RBCs were obtained by an incubation of healthy RBCs at a high concentration of glucose, representing the pathological stage of hyperglycaemia in diabetic complications, and analyses of their deformability and aggregation were carried out. Overall, the developed in vitro analogue fluids were composed of a suspension of semi-rigid microbeads in a carrier viscoelastic fluid made of dextran 40 and xanthan gum. All suspensions of healthy and pathological RBCs, as well as their particulate analogue fluids, were extensively characterized in steady shear flow, as well as in small and large amplitude oscillatory shear flow. In addition, the well-known cell-free layer (CFL) phenomenon occurring in microchannels was investigated in detail to provide comparisons between healthy and pathological in vitro RBC suspensions and their corresponding analogue fluids at different volume concentrations (5% and 20%). The experimental results have shown a similar rheological behavior between the samples containing a suspension of pathological RBCs and the proposed analogue fluids. Moreover, this work shows that the particulate in vitro analogue fluids used have the ability to mimic well the CFL phenomenon occurring downstream of a microchannel contraction for pathological RBC suspensions. The proposed particulate fluids provide a more realistic behavior of the flow properties of suspended RBCs when compared with existing non-particulate blood analogues, and consequently, they are advantageous for detailed investigations of microcirculation.

1.
R.
Lima
,
T.
Ishikawa
,
Y.
Imai
,
M.
Takeda
,
S.
Wada
, and
T.
Yamaguchi
,
J. Biomech.
41
(
10
),
2188
2196
(
2008
).
2.
R.
Lima
,
T.
Ishikawa
,
Y.
Imai
,
M.
Takeda
,
S.
Wada
, and
T.
Yamaguchi
,
Ann. Biomed. Eng.
37
(
8
),
1546
1559
(
2009
).
3.
R.
Lima
,
T.
Ishikawa
,
Y.
Imai
, and
T.
Yamaguchi
, in
In Single and Two-Phase Flows on Chemical and Biomedical Engineering
, edited by
R.
Dias
,
A. A.
Martins
,
R.
Lima
, and
T. M.
Mata
(
Bentham Science
,
2012
), pp.
513
547
.
4.
G.
McHedlishvili
and
N.
Maeda
,
Jpn. J. Physiol.
51
(
1
),
19
30
(
2001
).
5.
S.
Kim
,
R. L.
Kong
,
A. S.
Popel
,
M.
Intaglietta
, and
P. C.
Johnson
,
Microcirculation
13
(
3
),
199
207
(
2006
).
6.
S.
Kim
,
P. K.
Ong
,
O.
Yalcin
,
M.
Intaglietta
, and
P. C.
Johnson
,
Biorheology
46
(
3
),
181
189
(
2009
).
7.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
,
Biorheology
43
(
2
),
147
159
(
2006
).
8.
D.
Pinho
,
T.
Yaginuma
, and
R.
Lima
,
BioChip J.
7
(
4
),
367
374
(
2013
).
9.
R. O.
Rodrigues
,
R.
Lopes
,
D.
Pinho
,
A. I.
Pereira
,
V.
Garcia
,
S.
Gassmann
,
P. C.
Sousa
, and
R.
Lima
,
BioChip J.
10
(
1
),
9
15
(
2016
).
10.
F.
Robin
and
L.
Torsten
, The viscosity of the blood in narrow capillary tubes (American Physiological Society), Vol. 96, pp.
562
568
.
11.
M.
Nobuji
,
S.
Yoji
,
T.
Junya
, and
T.
Norihiko
, Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance (American Journal of Physiology – Heart and Circulatory Physiology, 1996), Vol. 271, pp.
H2454
H2461
.
12.
S.
Yamaguchi
,
T.
Yamakawa
, and
H.
Niimi
,
Biorheology
29
(2–3),
251
260
(
1991
).
13.
P.
Vennemann
,
K. T.
Kiger
,
R.
Lindken
,
B. C.
Groenendijk
,
S.
Stekelenburg-de Vos
,
T. L.
ten Hagen
,
N. T.
Ursem
,
R. E.
Poelmann
,
J.
Westerweel
, and
B. P.
Hierck
,
J. Biomech.
39
(
7
),
1191
1200
(
2006
).
14.
S.
Cho
,
S. S.
Ye
,
H. L.
Leo
, and
S.
Kim
, in
Visualization and Simulation of Complex Flows in Biomedical Engineering
(
Springer
,
2014
), pp.
89
100
.
15.
D.
Pinho
,
R. O.
Rodrigues
,
V.
Faustino
,
T.
Yaginuma
,
J.
Exposto
, and
R.
Lima
,
J. Biomech.
49
(
11
),
2293
2298
(
2016
).
16.
T.
Siddhartha
,
Y. V. B. V.
Kumar
,
P.
Amit
,
S. J.
Suhas
, and
A.
Amit
,
J. Micromech. Microeng.
25
(
8
),
083001
(
2015
).
17.
T.
Yaginuma
,
M.
Oliveira
,
R.
Lima
,
T.
Ishikawa
, and
T.
Yamaguchi
,
Biomicrofluidics
7
(
5
),
054110
(
2013
).
18.
R. O.
Rodrigues
,
M.
Bañobre-López
,
J.
Gallo
,
P. B.
Tavares
,
A. M. T.
Silva
,
R.
Lima
, and
H. T.
Gomes
,
J. Nanoparticle Res.
18
(7),
194
(
2016
).
19.
R. O.
Rodrigues
,
D.
Pinho
,
V.
Faustino
, and
R.
Lima
,
Biomed. Microdevices
17
(
6
),
108
(
2015
).
20.
D. A.
Fedosov
and
G.
Gompper
,
Soft Matter
10
(
17
),
2961
2970
(
2014
).
21.
D. A.
Fedosov
,
J.
Fornleitner
, and
G.
Gompper
,
Phys. Rev. Lett.
108
(
2
),
028104
(
2012
).
22.
P. K.
Ong
,
S.
Jain
,
B.
Namgung
,
Y. I.
Woo
, and
S.
Kim
,
Microcirculation
18
(
7
),
541
551
(
2011
).
23.
J.
Zhang
,
P. C.
Johnson
, and
A. S.
Popel
,
Microvasc. Res.
77
(
3
),
265
272
(
2009
).
24.
N.
Babu
and
M.
Singh
,
Clinical Hemorheology Microcirculation
31
,
273
280
(
2004
).
25.
J.
Viskupicova
,
D.
Blaskovic
,
S.
Galiniak
,
M.
Soszyński
,
G.
Bartosz
,
L.
Horakova
, and
I.
Sadowska-Bartosz
,
Redox Biol.
5
,
381
387
(
2015
).
26.
P. K.
Ong
and
S.
Kim
,
Microcirculation
20
(
5
),
440
453
(
2013
).
27.
S.
Sehyun
,
K.
Yun-Hee
,
H.
Jian-Xun
,
K.
Yu-Kyung
,
S.
Jang-Soo
, and
S.
Megha
,
Clinical Hemorheology Microcirculation
36
,
253
261
(
2007
).
28.
S.
Shin
,
Y.-H.
Ku
,
J.-S.
Suh
, and
M.
Singh
,
Clin. Hemorheol. Microcirc.
38
(
3
),
153
161
(
2008
).
29.
B.
Riquelme
,
P.
Foresto
,
M.
D'Arrigo
,
J.
Valverde
, and
R.
Rasia
,
J. Biochem. Biophys. Methods
62
(
2
),
131
141
(
2005
).
30.
V.
Deplano
,
Y.
Knapp
,
L.
Bailly
, and
E.
Bertrand
,
J. Biomech.
47
(
6
),
1262
1269
(
2014
).
31.
A. D.
Anastasiou
,
A. S.
Spyrogianni
,
K. C.
Koskinas
,
G. D.
Giannoglou
, and
S. V.
Paras
,
Med. Eng. Phys.
34
(
2
),
211
218
(
2012
).
32.
F. J. H.
Gijsen
,
F. N.
van de Vosse
, and
J. D.
Janssen
,
J. Biomech.
32
(
6
),
601
608
(
1999
).
33.
J. D.
Gray
,
I.
Owen
, and
M. P.
Escudier
,
Exp. Fluids
43
(
4
),
535
546
(
2007
).
34.
T. T.
Nguyen
,
Y.
Biadillah
,
R.
Mongrain
,
J.
Brunette
,
J. C.
Tardif
, and
O. F.
Bertrand
,
J. Biomech. Eng.
126
(
4
),
529
535
(
2004
).
35.
G.
Vlastos
,
D.
Lerche
, and
B.
Koch
,
Biorheology
34
,
19
36
(
1997
).
36.
P. C.
Sousa
,
F. T.
Pinho
,
M. S. N.
Oliveira
, and
M. A.
Alves
,
Biomicrofluidics
5
(
1
),
014108
(
2011
).
37.
L.
Campo-Deaño
,
R. P. A.
Dullens
,
D. G. A. L.
Aarts
,
F. T.
Pinho
, and
M. S. N.
Oliveira
,
Biomicrofluidics
7
(
3
),
034102
(
2013
).
38.
O.
Maruyama
,
T.
Yamane
,
N.
Tsunemoto
,
M.
Nishida
,
T.
Tsutsui
, and
T.
Jikuya
,
Artif. Organs
23
(
3
),
274
279
(
1999
).
39.
O.
Maruyama
,
T.
Yamane
,
M.
Nishida
,
A.
Aouidef
,
T.
Tsutsui
,
T.
Jikuya
, and
T.
Masuzawa
,
ASAIO J.
48
(
4
),
365
373
(
2002
).
40.
T. T.
Nguyen
,
R.
Mongrain
,
S.
Prakash
, and
J. C.
Tardif
, paper
presented at the Canadian Design Engineering Network Conference
,
Montreal, QC, Canada
(
2004
).
41.
J.
Calejo
,
D.
Pinho
,
F.
Galindo-Rosales
,
R.
Lima
, and
L.
Campo-Deaño
,
Micromachines
7
(
1
),
4
(
2016
).
42.
T. G.
Mezger
,
The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers
(
Vincentz Network GmbH & Co KG
,
2006
).
43.
G.
Schramm
,
A Practical Approach to Rheology and Rheometry.
(
Gebrueder HAAKE GmbH
,
Karlsruhe
,
2006
).
44.
R. H.
Ewoldt
,
P.
Winter
, and
G. H.
McKinley
, MITlaos version 2.1 Beta for MATLAB ( Cambridge, MA,
2007
).
45.
R. H.
Ewoldt
,
A.
Hosoi
, and
G. H.
McKinley
,
J. Rheol.
52
(
6
),
1427
1458
(
2008
).
46.
J.
Läuger
and
H.
Stettin
,
Rheol. Acta
49
(
9
),
909
930
(
2010
).
47.
P.
Sousa
,
J.
Carneiro
,
R.
Vaz
,
A.
Cerejo
,
F. T.
Pinho
,
M.
Alves
, and
M.
Oliveira
,
Biorheology
50
,
269
282
(
2013
).
48.
M. D.
Abramoff
,
P. J.
Magalhães
, and
S. J.
Ram
,
Biophotonics Int.
11
,
36
42
(
2004
).
49.
P. C.
Sousa
,
F. T.
Pinho
,
M. S. N.
Oliveira
, and
M. A.
Alves
,
J. Non-Newtonian Fluid Mech.
165
(
11-12
),
652
671
(
2010
).
50.
L.
Waite
and
J. M.
Fine
,
Applied Biofluid Mechanics
(
McGraw-Hill Education
,
2007
).
51.
B. N.
Munoz-Sanchez
,
S. F.
Silva
,
D.
Pinho
,
E. J.
Vega
, and
R.
Lima
,
Biomicrofluidics
10
(
1
),
014122
(
2016
).
52.
K.
Tsukada
,
E.
Sekizuka
,
C.
Oshio
, and
H.
Minamitani
,
Microvasc. Res.
61
(
3
),
231
239
(
2001
).
53.
B.
Namgung
,
H.
Sakai
, and
S.
Kim
,
Clin. Hemorheol. Microcirc.
61
(
3
),
445
457
(
2015
).
54.
L.
Campo-Deaño
,
F. J.
Galindo-Rosales
,
F. T.
Pinho
,
M. A.
Alves
, and
M. S. N.
Oliveira
,
J. Non-Newtonian Fluid Mech.
166
(
21–22
),
1286
1296
(
2011
).
55.
R. H.
Ewoldt
,
M. T.
Johnston
, and
L. M.
Caretta
, in
Complex Fluids in Biological Systems: Experiment, Theory, and Computation
, edited by
S. E.
Spagnolie
(
Springer New York
,
New York, NY
,
2015
), pp.
207
241
.
56.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
,
J. Fluid Mech.
785
,
486
505
(
2015
).
57.
R. P.
Chhabra
,
Bubbes, Drops and Particles in Non-Newtonian Fluids
, 2nd ed. (
CRC Press
,
2006
).
58.
A.
Karimi
,
S.
Yazdi
, and
A. M.
Ardekani
,
Biomicrofluidics
7
(
2
),
021501
(
2013
).
59.
M. A.
Tehrani
,
J. Rheol.
40
(
6
),
1057
1077
(
1996
).
60.
S. V.
Loon
,
J.
Fransaer
,
C.
Clasen
, and
J.
Vermant
,
J. Rheol.
58
(
1
),
237
254
(
2014
).

Supplementary Material

You do not currently have access to this content.