There is a need for imaging and sensing instrumentation that can monitor transitions in a biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we describe the design, manufacture, and use of a microfluidic flow cell to visualize the surface structure of bacterial biofilms with white-light interferometry (WLI). The novel imaging chip enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and the wide field of view (>1 mm by 1 mm) enabled the detection of biofilm formation as early as 3 h after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated the monitoring of the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled the monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in the biofilm structure that occurred in response to exposure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.

1.
P. S.
Stewart
,
Int. J. Med. Microbiol.
292
(
2
),
107
113
(
2002
).
2.
G.
Di Bonaventura
,
A.
Pompilio
,
C.
Picciani
,
M.
Iezzi
,
D.
D'Antonio
, and
R.
Piccolomini
,
Antimicrob. Agents Chemother.
50
(
10
),
3269
3276
(
2006
).
3.
S. S.
Socransky
and
A. D.
Haffajee
,
Periodontol 2000
28
(
1
),
12
55
(
2002
).
4.
5.
N.
Høiby
,
T.
Bjarnsholt
,
M.
Givskov
,
S.
Molin
, and
O.
Ciofu
,
Int. J. Antimicrob. Agents
35
(
4
),
322
332
(
2010
).
6.
J. S.
Biteen
,
P. C.
Blainey
,
Z. G.
Cardon
,
M.
Chun
,
G. M.
Church
,
P. C.
Dorrestein
,
S. E.
Fraser
,
J. A.
Gilbert
,
J. K.
Jansson
,
R.
Knight
,
J. F.
Miller
,
A.
Ozcan
,
K. A.
Prather
,
S. R.
Quake
,
E. G.
Ruby
,
P. A.
Silver
,
S.
Taha
,
G.
van den Engh
,
P. S.
Weiss
,
G. C. L.
Wong
,
A. T.
Wright
, and
T. D.
Young
,
ACS Nano
10
(
1
),
6
37
(
2016
).
7.
J. S.
Teodósio
,
M.
Simões
,
L. F.
Melo
, and
F. J.
Mergulhão
,
Biofouling
27
(
1
),
1
11
(
2011
).
8.
J.
Azeredo
,
N. F.
Azevedo
,
R.
Briandet
,
N.
Cerca
,
T.
Coenye
,
A. R.
Costa
,
M.
Desvaux
,
G.
Di Bonaventura
,
M.
Hébraud
,
Z.
Jaglic
,
M.
Kačániová
,
S.
Knøchel
,
A.
Lourenço
,
F.
Mergulhão
,
R. L.
Meyer
,
G.
Nychas
,
M.
Simões
,
O.
Tresse
, and
C.
Sternberg
,
Crit. Rev. Microbiol.
43
(
3
),
313
351
(
2017
).
9.
A.
Karimi
,
D.
Karig
,
A.
Kumar
, and
A. M.
Ardekani
,
Lab Chip
15
(
1
),
23
42
(
2015
).
10.
M.
Salta
,
L.
Capretto
,
D.
Carugo
,
J. A.
Wharton
, and
K. R.
Stokes
,
Biomicrofluidics
7
(
6
),
064118
(
2013
).
11.
J.
Greener
,
M. P.
Gashti
,
A.
Eslami
,
M. P.
Zarabadi
, and
S. M.
Taghavi
,
Biomicrofluidics
10
(
6
),
064107
(
2016
).
12.
A.
Devillez
,
S.
Lesko
, and
W.
Mozer
,
Wear
256
(
1–2
),
56
65
(
2004
).
13.
B.
Holme
and
O.
Lunder
,
Corros. Sci.
49
(
2
),
391
401
(
2007
).
14.
O. M.
Conor
,
H.
Martin
,
B.
Magali
,
D.
Russell
, and
M.
Alan
,
Meas. Sci. Technol.
14
(
10
),
1807
(
2003
).
15.
J.
Reed
,
W. J.
Walczak
,
O. N.
Petzold
, and
J. K.
Gimzewski
,
Langmuir
25
(
1
),
36
39
(
2009
).
16.
C.
Larimer
,
J. D.
Suter
,
G.
Bonheyo
, and
R. S.
Addleman
,
J. Biophotonics
9
(
6
),
656
666
(
2016
).
17.
C.
Larimer
,
M.
Brann
,
J. D.
Suter
, and
R. S.
Addleman
,
Opt. Eng.
56
(
11
),
111708–111708
(
2017
).
18.
C.
Larimer
,
M.
Brann
,
J. D.
Suter
,
G.
Bonheyo
, and
R. S.
Addleman
,
Proc. SPIE
9960
,
996004
996010
(
2016
).
19.
C. K.
Stover
,
X. Q.
Pham
,
A.
Erwin
,
S.
Mizoguchi
,
P.
Warrener
,
M.
Hickey
,
F.
Brinkman
,
W.
Hufnagle
,
D.
Kowalik
, and
M.
Lagrou
,
Nature
406
(
6799
),
959
964
(
2000
).
20.
G. P.
Bodey
,
R.
Bolivar
,
V.
Fainstein
, and
L.
Jadeja
,
Rev. Infect. Dis.
5
(
2
),
279
313
(
1983
).
21.
J. W.
Costerton
,
P. S.
Stewart
, and
E. P.
Greenberg
,
Science
284
(
5418
),
1318
1322
(
1999
).
22.
K. P.
Rumbaugh
,
J. A.
Griswold
, and
A. N.
Hamood
,
Microbes Infect.
2
(
14
),
1721
1731
(
2000
).
23.
X.
Zhang
,
P. L.
Bishop
, and
M. J.
Kupferle
,
Water Sci. Technol.
37
(
4–5
),
345
348
(
1998
).
24.
C.
Picioreanu
,
M. C.
Van Loosdrecht
, and
J. J.
Heijnen
,
Biotechnol. Bioeng.
72
(
2
),
205
218
(
2001
).
25.
R. M.
Donlan
,
Emerging Infect. Dis.
8
(
9
),
881
890
(
2002
).
26.
M. F.
Fay
and
T.
Dresel
,
Proc. SPIE
9960
,
996005
996009
(
2016
).
27.
J.
Schmit
,
J.
Reed
,
E.
Novak
, and
J. K.
Gimzewski
,
J. Opt. A: Pure Appl. Opt.
10
(
6
),
064001
(
2008
).
You do not currently have access to this content.