Drosophila melanogaster is a well-established model organism to understand biological processes and study human diseases at the molecular-genetic level. The central nervous system (CNS) of Drosophila larvae is widely used as a model to study neuron development and network formation. This has been achieved by using various genetic manipulation tools such as microinjection to knock down certain genes or over-express proteins for visualizing the cellular activities. However, visualization of an intact-live neuronal response in larva's Central Nervous System (CNS) is challenging due to robust digging/burrowing behaviour that impedes neuroimaging. To address this problem, dissection is used to isolate and immobilize the CNS from the rest of the body. In order to obtain a true physiological response from the Drosophila CNS, it is important to avoid dissection, while the larva should be kept immobilized. In this paper, a series of microfluidic clamps were investigated for intact immobilization of the larva. As a result, an optimized structure for rapid mechanical immobilization of Drosophila larvae for CNS imaging was determined. The clamping and immobilization processes were characterized by imaging and movement measurement of the CNS through the expression of genetically encoded Calcium sensor GCaMP5 in all sensory and cholinergic interneurons. The optimal structure that included two 3D constrictions inside a narrowed channel considerably reduced the internal CNS capsule movements. It restricts the CNS movement to 10% of the motion from a glued larva and allows motion of only 10 ± 30 μm over 350 s immobilization which was sufficient for CNS imaging. These larva-on-a-chip platforms can be useful for studying CNS responses to sensory cues such as sound, light, chemosensory, tactile, and electric/magnetic fields.

1.
S.
Tickoo
and
S.
Russell
,
Curr. Opin. Pharmacol.
2
,
555
560
(
2002
).
2.
E. S.
Heckscher
,
S. R.
Lockery
, and
C. Q.
Doe1
,
J. Neurosci.
32
(
36
),
12460
12471
(
2012
).
3.
E.
Bier
,
Nat. Rev. Genet.
6
,
9
23
(
2005
).
5.
H.
Kohsaka
,
S.
Okusawa
,
Y.
Itakura
,
A.
Fushiki
, and
A.
Nose
,
Dev. Growth Differ.
54
,
408
419
(
2012
).
6.
A.
Schoofs
,
S.
Niederegger
,
A.
van Ooyen
,
H.
Heinzel
, and
R.
Spiess
,
J. Insect Physiol.
56
,
695
705
(
2010
).
7.
S.
Mondal
,
S.
Ahlawat
, and
S. P.
Koushika
,
J. Visualized Exp.
67
,
3780
(
2012
).
8.
P.
Rezai
,
S.
Salam
,
P.
Selvaganapathy
, and
B. P.
Gupta
, in
Integrated Microsystems
, edited by
K.
Iniewski
(
CRC Press
,
2011
), pp.
581
608
.
9.
S. E.
Hulme
and
G. M.
Whitesides
,
Angew. Chem. Int. Ed. Engl.
50
,
4774
4807
(
2011
).
10.
P.
Rezai
,
A.
Siddiqui
,
P. R.
Selvaganapathy
, and
B. P.
Gupta
,
Lab Chip
10
(
2
),
220
226
(
2010
).
11.
S.
Mondal
,
S.
Ahlawat
,
K.
Rau
,
V.
Venkataraman
, and
S. P.
Koushika
,
Traffic
12
,
372
385
(
2011
).
12.
M.
Ghannad-Rezaie
,
X.
Wang
,
B.
Mishra
,
C.
Collins
, and
N.
Chronis
,
PLoS One
7
,
e29869
(
2012
).
13.
R.
Ghaemi
,
P.
Rezai
,
B. G.
Iyengar
, and
P. R.
Selvaganapathy
,
Lab Chip
15
(
4
),
1116
1122
(
2015
).
14.
R.
Ardeshiri
 et al, “
Cardiac screening of intact Drosophila melanogaster larvae under exposure to aqueous and gaseous toxins in a microfluidic device
,”
RSC Adv.
6(70)
,
65714
65724
(
2016
).
15.
T. V.
Chokshi
,
A.
Ben-Yakar
, and
N.
Chronis
,
Lab Chip
9
,
151
157
(
2009
).
16.
S. E.
Hulme
,
S. S.
Shevkoplyas
,
J.
Apfeld
,
W.
Fontana
, and
G. M.
Whitesides
,
Lab Chip
7
,
1515
1523
(
2007
).
17.
K.
Chung
,
M. M.
Crane
, and
H.
Lu
,
Nat. Methods
5
,
637
643
(
2008
).
18.
C. L.
Gilleland
,
C. B.
Rohde
,
F.
Zeng
, and
M. F.
Yanik
,
Nat. Protoc.
5
,
1888
1902
(
2010
).
19.
F.
Zeng
,
C. B.
Rohde
, and
M. F.
Yanik
,
Lab Chip
8
,
653
656
(
2008
).
20.
J. R.
Fakhoury
,
J. C.
Sisson
, and
X. J.
Zhang
,
Microfluid. Nanofluid.
6
,
299
313
(
2009
).
21.
S.
Zappe
,
M.
Fish
,
M. P.
Scott
, and
O.
Solgaard
,
Lab Chip
6
,
1012
1019
(
2006
).
22.
X.
Zhang
,
M. P.
Scott
,
C. F.
Quate
, and
O.
Solgaard
, “
Microoptical characterization of piezoelectric vibratory microinjections in Drosophila embryos for genome-wide RNAi screen
,”
Microelectromech. Syst., J.
15
(
2
),
277
286
(
2006
).
23.
D.
Delubac
,
C. B.
Highley
,
M.
Witzberger-Krajcovic
,
J. C.
Ayoob
,
E. C.
Furbee
,
J. S.
Minden
, and
S.
Zappe
, “
Microfluidic system with integrated microinjector for automated Drosophila embryo injection
,”
Lab Chip
12
(
22
),
4911
4919
(
2012
).
24.
R.
Ghaemi
and
P. R.
Selvaganapathy
, “
A microfluidic microinjection of drosophila embryo in a format using compliant mechanism and electrokinetic dosage control
,” in
The 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences
, Gyeongju, Korea, 25–29 October 2015.
25.
G. T.
Dagani
,
K.
Monzo
,
J. R.
Fakhoury
,
C. C.
Chen
,
J. C.
Sisson
, and
X.
Zhang
,
Biomed. Microdevices
9
,
681
694
(
2007
).
26.
T. J.
Levario
,
M.
Zhan
,
B.
Lim
,
S. Y.
Shvartsman
, and
H.
Lu
,
Nat. Protoc.
8
,
721
736
(
2013
).
27.
E. M.
Lucchetta
,
M. S.
Munson
, and
R. F.
Ismagilov
,
Lab Chip
6
,
185
190
(
2006
).
28.
J.
Akerboom
,
T. W.
Chen
,
T. J.
Wardill
,
L.
Tian
,
J. S.
Marvin
,
S.
Mutlu
,
N. C.
Calderon
,
F.
Esposti
,
B. G.
Borghuis
,
X. R.
Sun
,
A.
Gordus
,
M. B.
Orger
,
R.
Portugues
,
F.
Engert
,
J. J.
Macklin
,
A.
Filosa
,
A.
Aggarwal
,
R. A.
Kerr
,
R.
Takagi
,
S.
Kracun
,
E.
Shigetomi
,
B. S.
Khakh
,
H.
Baier
,
L.
Lagnado
,
S. S.
Wang
,
C. I.
Bargmann
,
B. E.
Kimmel
,
V.
Jayaraman
,
K.
Svoboda
,
D. S.
Kim
,
E. R.
Schreiter
, and
L. L.
Looger
,
J. Neurosci.
32
,
13819
13840
(
2012
).
29.
A. H.
Brand
and
N.
Perrimon
,
Development
118
(
2
),
401
415
(
1993
).
30.
P. M.
Salvaterra
and
T.
Kitamoto
,
Gene Expression Patterns
1
(
1
),
73
82
(
2001
).
31.
J.
Nakai
,
M.
Ohkura
, and
K.
Imoto
,
Nat. Biotechnol.
19
(
2
),
137
141
(
2001
).
32.
J.
Akerboom
,
J. D.
Rivera
,
M. M.
Guilbe
,
E. C.
Malavé
,
H. H.
Hernandez
,
L.
Tian
,
S.
Hires
,
J. S.
Marvin
,
L. L.
Looger
, and
E. R.
Schreite
,
J. Biol. Chem.
284
(
10
),
6455
6464
(
2009
).
You do not currently have access to this content.