We present a simple technique to generate stable hydrodynamically focused flows by driving the flow with hydrostatic pressure from liquid columns connected to the inlets of a microfluidic device. Importantly, we compare the focused flows generated by hydrostatic pressure and classical syringe pump driven flows and find that the stability of the hydrostatic pressure driven technique is significantly better than the stability achieved via syringe pumps, providing fluctuation-free focused flows that are suitable for sensitive microfluidic flow cytometry applications. We show that the degree of flow focusing with the hydrostatic method can be accurately controlled by the simple tuning of the liquid column heights. We anticipate that this approach to stable flow focusing will find many applications in microfluidic cytometry technologies.

1.
P. A.
Auroux
,
D.
Iossifidis
,
D. R.
Reyes
, and
A.
Manz
,
Anal. Chem.
74
,
2637
(
2002
).
2.
A.
Manz
,
H. M.
Widmers
, and
N.
Graber
,
Sens. Actuators, B
1
,
244
(
1990
).
3.
D.
Mark
,
S.
Haeberle
,
G.
Roth
,
F.
von Stetten
, and
R.
Zengerle
,
Chem. Soc. Rev.
39
,
1153
(
2010
).
4.
L. J.
Millet
,
J. D.
Lucheon
,
R. F.
Standaert
,
S. T.
Rettererab
, and
M. J.
Doktyczab
,
Lab Chip
15
,
1799
(
2015
).
5.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
6.
S.-I.
Pai
,
Viscous Flow Theory: Laminar Flow
(
D. Van Nostrand
,
1956
).
7.
J.
Ducree
and
R.
Zengerle
,
Microfluidics
(
Springer-Verlag
,
2004
) p.
520
.
8.
A. S.
Yang
and
W. H.
Hsieh
,
Biomed. Microdevices
9
,
113
(
2007
).
9.
G.-B.
Lee
,
C.-I.
Hung
,
B.-J.
Ke
,
G.-R.
Huang
,
B.-H.
Hwei
, and
H.-F.
Lai
,
J. Fluids Eng.
123
,
672
(
2001
).
10.
J. V.
Watson
,
Introduction to Flow Cytometry
(
Cambridge University Press
,
2004
).
11.
M.
Brown
and
C.
Wittwer
,
Clin. Chem.
46
,
1221
(
2000
).
12.
S.
Gawad
,
L.
Schild
, and
P. H.
Renaud
,
Lab Chip
1
,
76
(
2001
).
13.
T.
Sun
and
H.
Morgan
,
Microfluid. Nanofluid.
8
,
423
(
2010
).
14.
Q.
Xu
,
M.
Hashimoto
,
T. T.
Dang
,
T.
Hoare
,
D. S.
Kohane
,
G. M.
Whitesides
,
R.
Langer
, and
D. G.
Anderson
,
Small
5
,
1575
(
2009
).
15.
P. S.
Dittrich
and
A.
Manz
,
Nat. Rev. Drug Discov.
5
,
210
(
2006
).
16.
P. K.
Wong
,
Y.-K.
Lee
, and
C.-M.
Ho
,
J. Fluid Mech.
497
,
55
(
2003
).
17.
J.
Knight
,
A.
Vishwanath
,
J.
Brody
, and
R.
Austin
,
Phys. Rev. Lett.
80
,
3863
(
1998
).
18.
T.
Ward
,
M.
Faivre
,
M.
Abkarian
, and
H. A.
Stone
,
Electrophoresis
26
,
3716
(
2005
).
19.
Z.
Li
,
S. Y.
Mak
,
A.
Sauret
, and
H. C.
Shum
,
Lab a Chip
14
,
744
(
2014
).
20.
W.
Zeng
,
I.
Jacobi
,
D. J.
Beck
,
S.
Li
, and
H. A.
Stone
,
Lab Chip
15
,
1110
(
2015
).
21.
J.
Atencia
and
D. J.
Beebe
,
Lab Chip
6
,
567
(
2006
).
22.
X.
Mao
,
S.-C. S.
Lin
,
C.
Dong
, and
T. J.
Huang
,
Lab Chip
9
,
1583
(
2009
).
23.
E. M.
Strohm
,
V.
Gnyawali
,
M.
Van De Vondervoort
,
Y.
Daghighi
,
S. S. H.
Tsai
, and
M. C.
Kolios
,
Proc. SPIE
9708
,
97081A
(
2016
).
24.
Y.
Xia
and
G. M.
Whitesides
,
Annu. Rev. Mater. Sci.
28
,
153
(
1998
).
25.
N.
Otsu
,
IEEE Trans. Syst. Man. Cybern.
9
,
62
66
(
1979
).
26.
T.
Stiles
,
R.
Fallon
,
T.
Vestad
,
J.
Oakey
,
D.
Marr
,
J.
Squier
, and
R.
Jimenez
,
Microfluid. Nanofluid.
1
,
280
(
2005
).

Supplementary Material

You do not currently have access to this content.