Genome mapping involves the confinement of long DNA molecules, in excess of 150 kilobase pairs, in nanochannels near the circa 50 nm persistence length of DNA. The fidelity of the map relies on the assumption that the DNA is linearized by channel confinement, which assumes the absence of knots. We have computed the probability of forming different knot types and the size of these knots for long chains (approximately 164 kilobase pairs) via pruned-enriched Rosenbluth method simulations of a discrete wormlike chain model of DNA in channel sizes ranging from 35 nm to 60 nm. Compared to prior simulations of short DNA in similar confinement, these long molecules exhibit both complex knots, with up to seven crossings, and multiple knots per chain. The knotting probability is a very strong function of channel size, ranging from 0.3% to 60%, and rationalized in the context of Odijk's theory for confined semiflexible chains. Overall, the knotting probability and knot size obtained from these equilibrium measurements are not consistent with experimental measurements of the properties of anomalously bright regions along the DNA backbone during genome mapping experiments. This result suggests that these events in experiments are either knots formed during the processing of the DNA prior to injection into the nanochannel or regions of locally high DNA concentration without a topological constraint. If so, knots during genome mapping are not an intrinsic problem for genome mapping technology.

1.
E. T.
Lam
,
A.
Hastie
,
C.
Lin
,
D.
Ehrlich
,
S. K.
Das
,
M. D.
Austin
,
P.
Deshpande
,
H.
Cao
,
N.
Nagarajan
,
M.
Xiao
, and
P.-Y.
Kwok
,
Nat. Biotechnol.
30
,
771
(
2012
).
2.
M.
Levy-Sakin
and
Y.
Ebenstein
,
Curr. Opin. Biotechnol.
24
,
690
(
2013
).
3.
A. R.
Hastie
,
L.
Dong
,
A.
Smith
,
J.
Finklestein
,
E. T.
Lam
,
N.
Huo
,
H.
Cao
,
P.-Y.
Kwok
,
K. R.
Deal
,
J.
Dvorak
,
M.-C.
Luo
,
Y.
Gu
, and
M.
Xiao
,
PLoS One
8
,
e55864
(
2013
).
4.
M.
Pendleton
,
R.
Sebra
,
A. W. C.
Pang
,
A.
Ummat
,
O.
Franzen
,
T.
Rausch
,
A. M.
Stutz
,
W.
Stedman
,
T.
Anantharaman
,
A.
Hastie
,
H.
Dai
,
M. H. Y.
Fritz
,
H.
Cao
,
A.
Cohain
,
G.
Deikus
,
R. E.
Durrett
,
S. C.
Blanchard
,
R.
Altman
,
C.-S.
Chin
,
Y.
Guo
,
E. E.
Paxinos
,
J. O.
Korbel
,
R. B.
Darnell
,
W. R.
McCombie
,
P.-Y.
Kowk
,
C. E.
Mason
,
E. E.
Schadt
, and
A.
Bashir
,
Nat. Methods
12
,
780
(
2015
).
5.
J.
Seo
,
A.
Rhie
,
J.
Kim
,
S.
Lee
,
M.
Sohn
,
C.
Kim
,
A.
Hastie
,
H.
Cao
,
J.
Yun
,
J.
Kim
,
J.
Kuk
,
G. H.
Park
,
J.
Kim
,
H.
Ryu
,
J.
Kim
,
M.
Roh
,
J.
Baek
,
M. W.
Hunkapiller
,
J.
Korlach
,
J.
Shin
, and
C.
Kim
,
Nature
538
,
243
(
2016
).
6.
H.
Cao
,
A. R.
Hastie
,
D.
Coa
,
E. T.
Lam
,
Y.
Sun
,
H.
Huang
,
X.
Liu
,
L.
Lin
,
W.
Andrews
,
S.
Chan
,
S.
Huang
,
X.
Tong
,
M.
Requa
,
T.
Anantharaman
,
A.
Krogh
,
H.
Yang
,
H.
Cao
, and
X.
Xu
,
GigaScience
3
,
34
(
2014
).
7.
C. L.
Usher
,
R. E.
Handsaker
,
T.
Esko
,
M. A.
Tuke
,
M. N.
Weedon
,
A. R.
Hastie
,
H.
Cao
,
J. E.
Moon
,
S.
Kashin
,
C.
Fuchsberger
,
A.
Metspalu
,
C. N.
Pato
,
M. T.
Pato
,
M. I.
McCarthy
,
M.
Boehnke
,
D. M.
Altshuler
,
T. M.
Frayling
,
J. N.
Hirschhorn
, and
S. A.
McCarroll
,
Nat. Genet.
47
,
921
(
2015
).
8.
A. C.
English
,
W. J.
Salerno
,
O. A.
Hampton
,
C.
Gonzaga-Jauregui
,
S.
Ambreth
,
D. I.
Ritter
,
C. R.
Beck
,
C. F.
Davis
,
M.
Dahdouli
,
S.
Ma
,
A.
Carroll
,
N.
Veeraraghavan
,
J.
Bruestle
,
B.
Drees
,
A.
Hastie
,
E. T.
Lam
,
S.
White
,
P.
Mishra
,
M.
Wang
,
Y.
Han
,
F.
Zhang
,
P.
Stankiewicz
,
D. A.
Wheeler
,
J. G.
Reid
,
D. M.
Muzny
,
J.
Rogers
,
A.
Sabo
,
K. C.
Worley
,
J. R.
Lupski
,
E.
Boerwinkle
, and
R. A.
Gibbs
,
BMC Genomics
16
,
286
(
2015
).
9.
L.
Feuk
,
A.
Carson
, and
S.
Scherer
,
Nat. Rev. Genet.
7
,
85
(
2006
).
10.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
,
Science
265
,
1599
(
1994
).
11.
J. G.
Reifenberger
,
K. D.
Dorfman
, and
H.
Cao
,
Analyst
140
,
4887
(
2015
).
12.
E.
Orlandini
and
S. G.
Whittington
,
Rev. Mod. Phys.
79
,
611
(
2007
).
13.
D.
Marenduzzo
,
C.
Micheletti
, and
E.
Orlandini
,
J. Phys.: Condens. Matter
22
,
283102
(
2010
).
14.
C.
Micheletti
,
D.
Marenduzzo
, and
E.
Orlandini
,
Phys. Rep.
504
,
1
(
2011
).
15.
C.
Micheletti
,
D.
Marenduzzo
,
E.
Orlandini
, and
D.
Sumners
,
Biophys. J.
95
,
3591
(
2008
).
16.
C.
Micheletti
and
E.
Orlandini
,
Macromolecules
45
,
2113
(
2012
).
17.
C.
Micheletti
and
E.
Orlandini
,
Soft Matter
8
,
10959
(
2012
).
18.
C.
Micheletti
and
E.
Orlandini
,
ACS Macro Lett.
3
,
876
(
2014
).
19.
A.
Suma
,
E.
Orlandini
, and
C.
Micheletti
,
J. Phys.: Condens. Matter
27
,
354102
(
2015
).
20.
L.
Dai
,
J. R. C.
van der Maarel
, and
P. S.
Doyle
,
ACS Macro Lett.
1
,
732
(
2012
).
21.
L.
Dai
,
C. B.
Renner
, and
P. S.
Doyle
,
Macromolecules
48
,
2812
(
2015
).
22.
S. K.
Das
,
M. D.
Austin
,
M. C.
Akana
,
P.
Deshpande
,
H.
Cao
, and
M.
Xiao
,
Nucleic Acids Res.
38
,
e177
(
2010
).
23.
P.
Grassberger
,
Phys. Rev. E
56
,
3682
(
1997
).
24.
T.
Prellberg
and
J.
Krawczyk
,
Phys. Rev. Lett.
92
,
120602
(
2004
).
25.
D. R.
Tree
,
Y.
Wang
, and
K. D.
Dorfman
,
Phys. Rev. Lett.
110
,
208103
(
2013
).
26.
M. D.
Frank-Kamenetskii
and
A. V.
Vologodskii
,
Sov. Phys. Usp.
24
,
679
(
1981
).
27.
Y.
Wang
,
D. R.
Tree
, and
K. D.
Dorfman
,
Macromolecules
44
,
6594
(
2011
).
28.
A.
Muralidhar
and
K. D.
Dorfman
,
Macromolecules
48
,
2829
(
2015
).
29.
A.
Jain
,
J.
Sheats
,
J. G.
Reifenberger
,
H.
Cao
, and
K. D.
Dorfman
,
Biomicrofluidics
10
,
054117
(
2016
).
30.
A.
Muralidhar
,
D. R.
Tree
, and
K. D.
Dorfman
,
Macromolecules
47
,
8446
(
2014
).
31.
F.
Comoglio
and
M.
Rinaldi
,
PLoS One
6
,
e18693
(
2011
).
32.
F.
Comoglio
and
M.
Rinaldi
,
Bioinformatics
28
,
1400
(
2012
).
33.
R. C.
Lua
and
A. Y.
Grosberg
,
PLoS Comput. Biol.
2
,
e45
(
2006
).
34.
T.
Odijk
,
J. Chem. Phys.
125
,
204904
(
2006
).
35.
T.
Odijk
,
Phys. Rev. E
77
,
060901
(
2008
).
36.
L.
Tubiana
,
A.
Rosa
,
F.
Fragiacomo
, and
C.
Micheletti
,
Macromolecules
46
,
3669
(
2013
).
37.
A.
Muralidhar
,
D. R.
Tree
,
Y.
Wang
, and
K. D.
Dorfman
,
J. Chem. Phys.
140
,
084905
(
2014
).
38.
D. R.
Tree
,
W. F.
Reinhart
, and
K. D.
Dorfman
,
Macromolecules
47
,
3672
(
2014
).
39.
A.
Muralidhar
and
K. D.
Dorfman
,
Macromolecules
49
,
1120
(
2016
).
40.
A.
Muralidhar
,
M.
Quevillon
, and
K. D.
Dorfman
,
Polymers
8
,
79
(
2016
).
41.
V. V.
Rybenkov
,
N. R.
Cozzarelli
, and
A. V.
Vologodskii
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
5307
(
1993
).
42.
C. H.
Nakajima
and
T.
Sakaue
,
Prog. Theor. Phys. Suppl.
191
,
205
(
2011
).
43.
C. H.
Nakajima
and
T.
Sakaue
,
Soft Matter
9
,
3140
(
2013
).
44.
D. R.
Tree
,
Y.
Wang
, and
K. D.
Dorfman
,
Biomicrofluidics
7
,
054118
(
2013
).
45.
D.
Gupta
,
J. J.
Miller
,
A.
Muralidhar
,
S.
Mahshid
,
W.
Reisner
, and
K. D.
Dorfman
,
ACS Macro Lett.
4
,
759
(
2015
).
46.
D.
Gupta
,
J.
Sheats
,
A.
Muralidhar
,
J. J.
Miller
,
D. E.
Huang
,
S.
Mahshid
,
K. D.
Dorfman
, and
W.
Reisner
,
J. Chem. Phys.
140
,
214901
(
2014
).
47.
L.
Dai
,
D. R.
Tree
,
J. R. C.
Van Der Maarel
,
K. D.
Dorfman
, and
P. S.
Doyle
,
Phys. Rev. Lett.
110
,
168105
(
2013
).
48.
W. F.
Reinhart
,
J. G.
Reifenberger
,
D.
Gupta
,
A.
Muralidhar
,
J.
Sheats
,
H.
Cao
, and
K. D.
Dorfman
,
J. Chem. Phys.
142
,
064902
(
2015
).
49.
D. R.
Tree
,
Y.
Wang
, and
K. D.
Dorfman
,
Phys. Rev. Lett.
108
,
228105
(
2012
).
50.
B.
Trefz
,
J.
Siebert
, and
P.
Virnau
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
7948
(
2014
).
You do not currently have access to this content.