We present a process for fabrication of free-standing SU-8 probes, with a dry, mechanical release of the final micro-devices. The process utilizes the thermal release tape, a commonly used cleanroom material, for facile heat-release from the sacrificial layer. For characterization of the SU-8 microfluidic probes, two liquid interfaces were designed: a disposable interface with integrated wells and an interface with external liquid reservoirs. The versatility of the fabrication and the release procedures was illustrated by further developing the process to functionalize the SU-8 probes for impedance sensing, by integrating metal thin-film electrodes. An additional interface scheme which contains electronic components for impedance measurements was developed. We investigated the possibilities of introducing perforations in the SU-8 device by photolithography, for solution sampling predominantly by diffusion. The SU-8 processes described here allow for a convenient batch production of versatile free-standing microfluidic devices with well-defined tip-geometry.

1.
M.
Wu
and
A. K.
Singh
,
Curr. Opin. Biotechnol.
23
(
1
),
83
88
(
2012
).
2.
S.
Gavasso
,
S.-E.
Gullaksen
,
J.
Skavland
, and
B. T.
Gjertsen
,
Expert Rev. Mol. Diagn.
16
(
5
),
579
589
(
2016
).
3.
T.
Haselgrübler
,
M.
Haider
,
B.
Ji
,
K.
Juhasz
,
A.
Sonnleitner
,
Z.
Balogi
, and
J.
Hesse
,
Anal. Bioanal. Chem.
406
(
14
),
3279
3296
(
2014
).
4.
A.
Reece
,
B.
Xia
,
Z.
Jiang
,
B.
Noren
,
R.
McBride
, and
J.
Oakey
,
Curr. Opin. Biotechnol.
40
,
90
96
(
2016
).
5.
M. A.
Qasaimeh
,
S. G.
Ricoult
, and
D.
Juncker
,
Lab Chip
13
(
1
),
40
50
(
2013
).
6.
A.
Ainla
,
G.
Jeffries
, and
A.
Jesorka
,
Micromachines
3
(
2
),
442
461
(
2012
).
7.
A.
Ahemaiti
,
A.
Ainla
,
G. D.
Jeffries
,
A.
Jesorka
, and
K.
Jardemark
,
Biophys. J.
106
(
2
),
191
a (
2014
).
8.
J.
Bruton
,
G. D.
Jeffries
, and
H.
Westerblad
,
PloS One
9
(
9
),
e108601
(
2014
).
9.
S.
Xu
,
A.
Kim
,
G. D.
Jeffries
, and
A.
Jesorka
,
Anal. Bioanal. Chem.
407
(
5
),
1295
1301
(
2015
).
10.
A.
Ainla
,
G. D.
Jeffries
,
R.
Brune
,
O.
Orwar
, and
A.
Jesorka
,
Lab Chip
12
(
7
),
1255
1261
(
2012
).
11.
Y.
Erkan
,
K.
Halma
,
I.
Czolkos
,
A.
Jesorka
,
P.
Dommersnes
,
R.
Kumar
,
T.
Brown
, and
O.
Orwar
,
Nano Lett.
8
(
1
),
227
231
(
2008
).
12.
H.
Lorenz
,
M.
Despont
,
N.
Fahrni
,
N.
LaBianca
,
P.
Renaud
, and
P.
Vettiger
,
J. Micromech. Microeng.
7
(
3
),
121
(
1997
).
13.
A.
del Campo
and
C.
Greiner
,
J. Micromech. Microeng.
17
(
6
),
R81
(
2007
).
14.
P.
Abgrall
,
V.
Conedera
,
H.
Camon
,
A. M.
Gue
, and
N. T.
Nguyen
,
Electrophoresis
28
(
24
),
4539
4551
(
2007
).
15.
D. L.
Herbertson
,
C. R.
Evans
,
N. J.
Shirtcliffe
,
G.
McHale
, and
M. I.
Newton
,
Sens. Actuators A
130
,
189
193
(
2006
).
16.
B.
Bohl
,
R.
Steger
,
R.
Zengerle
, and
P.
Koltay
,
J. Micromech. Microeng.
15
(
6
),
1125
(
2005
).
17.
A.
Mata
,
A. J.
Fleischman
, and
S.
Roy
,
J. Micromech. Microeng.
16
(
2
),
276
(
2006
).
18.
A.
Altuna
,
E.
Bellistri
,
E.
Cid
,
P.
Aivar
,
B.
Gal
,
J.
Berganzo
,
G.
Gabriel
,
A.
Guimerà
,
R.
Villa
, and
L. J.
Fernández
,
Lab Chip
13
(
7
),
1422
1430
(
2013
).
19.
E.
Mitri
,
G.
Birarda
,
L.
Vaccari
,
S.
Kenig
,
M.
Tormen
, and
G.
Grenci
,
Lab Chip
14
(
1
),
210
218
(
2014
).
20.
W. W.
Chi
,
W. W.
Seng
,
L. K.
Siong
,
I. A.
Azid
,
K.
Ibrahim
, and
D.
Mutharasu
,
Sens. Actuators A
167
(
1
),
97
101
(
2011
).
21.
M.
Agirregabiria
,
F.
Blanco
,
J.
Berganzo
,
M.
Arroyo
,
A.
Fullaondo
,
K.
Mayora
, and
J.
Ruano-Lopez
,
Lab Chip
5
(
5
),
545
552
(
2005
).
22.
R.
Vilares
,
C.
Hunter
,
I.
Ugarte
,
I.
Aranburu
,
J.
Berganzo
,
J.
Elizalde
, and
L.
Fernandez
,
Sens. Actuators B
147
(
2
),
411
417
(
2010
).
23.
P.
Abgrall
,
C.
Lattes
, and
X.
Dollat
,
J. Micromech. Microeng.
16
(
1
),
113
(
2005
).
24.
J. N.
Patel
,
B.
Kaminska
,
B. L.
Gray
, and
B. D.
Gates
,
J. Micromech. Microeng.
18
(
9
),
095028
(
2008
).
25.
G.
Petit-Pierre
,
A.
Bertsch
, and
P.
Renaud
,
Lab Chip
16
(
5
),
917
924
(
2016
).
26.
A.
Altuna
,
G.
Gabriel
,
L. M.
de la Prida
,
M.
Tijero
,
A.
Guimerá
,
J.
Berganzo
,
R.
Salido
,
R.
Villa
, and
L. J.
Fernández
,
J. Micromech. Microeng.
20
(
6
),
064014
(
2010
).
27.
T. C.
Leïchlé
,
M.
Von Arx
,
S.
Reiman
,
I.
Zana
,
W.
Ye
, and
M. G.
Allen
,
J. Micromech. Microeng.
14
(
4
),
462
(
2004
).
28.
C.
Luo
,
A.
Govindaraju
,
J.
Garra
,
T.
Schneider
,
R.
White
,
J.
Currie
, and
M.
Paranjape
,
Sens. Actuators A
114
(
1
),
123
128
(
2004
).
29.
S.
Tuomikoski
and
S.
Franssila
,
Sens. Actuators A
120
(
2
),
408
415
(
2005
).
30.
R.
Martinez-Duarte
and
M. J.
Madou
, in
Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications
(
CRC Press
,
Boca Raton, FL, USA
,
2011
), Vol.
2
, pp.
231
268
.
31.
H.
Rodilla
,
A.
Kim
,
G.
Jeffries
,
J.
Vukusic
,
A.
Jesorka
, and
J.
Stake
,
Sci. Rep.
6
,
19523
(
2016
).
32.
J. C.
Booth
,
N. D.
Orloff
,
J.
Mateu
,
M.
Janezic
,
M.
Rinehart
, and
J. A.
Beall
,
IEEE Trans. Instrum. Meas.
59
(
12
),
3279
3288
(
2010
).
33.
S.
Gawad
,
L.
Schild
, and
P.
Renaud
,
Lab Chip
1
(
1
),
76
82
(
2001
).
34.
Y.
Zheng
,
J.
Nguyen
,
Y.
Wei
, and
Y.
Sun
,
Lab Chip
13
(
13
),
2464
2483
(
2013
).
35.
Y.
Zhou
,
S.
Basu
,
E.
Laue
, and
A. A.
Seshia
,
Biosens. Bioelectron.
81
,
249
258
(
2016
).
36.
M.-P.
Schmidt
,
A.
Oseev
,
C.
Engel
,
A.
Brose
,
B.
Schmidt
, and
S.
Hirsch
,
J. Sens. Sens. Syst.
5
,
55
61
(
2016
).
37.
P.
Nandi
and
S. M.
Lunte
,
Anal. Chim. Acta
651
(
1
),
1
14
(
2009
).
38.
N.
Torto
,
R.
Majors
, and
T.
Laurell
,
LCGC North Am.
19
(
5
),
462
(
2001
); available at http://lup.lub.lu.se/record/2376457.
39.
S.
Menacherry
,
W.
Hubert
, and
J. B.
Justice
, Jr.
,
Anal. Chem.
64
(
6
),
577
583
(
1992
).
40.
B. S.
Rubin
,
J. Steroid Biochem. Mol. Biol.
127
(
1
),
27
34
(
2011
).
41.
Y.
Ren
,
S.-H.
Huang
,
S.
Mosser
,
M. O.
Heuschkel
,
A.
Bertsch
,
P. C.
Fraering
,
J.-J. J.
Chen
, and
P.
Renaud
,
Micromachines
6
(
12
),
1923
1934
(
2015
).
42.
Z.
Zhang
,
P.
Zhao
,
G.
Xiao
,
B. R.
Watts
, and
C.
Xu
,
Biomicrofluidics
5
(
4
),
046503
(
2011
).

Supplementary Material

You do not currently have access to this content.