This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and bead-bound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols.

1.
P. C.
Gach
,
S. C. C.
Shih
,
J.
Sustarich
,
J. D.
Keasling
,
N. J.
Hillson
,
P. D.
Adams
, and
A. K.
Singh
,
ACS Synth. Biol.
5
,
426
433
(
2016
).
2.
A. A. K.
Nielsen
,
B. S.
Der
,
J.
Shin
,
P.
Vaidyanathan
,
V.
Paralanov
,
E. A.
Strychalski
,
D.
Ross
,
D.
Densmore
, and
C. A.
Voigt
,
Science
352
,
aac7341
(
2016
).
3.
H. H.
Wang
,
F. J.
Isaacs
,
P. A.
Carr
,
Z. Z.
Sun
,
G.
Xu
,
C. R.
Forest
, and
G. M.
Church
,
Nat. Lett.
460
,
894
898
(
2009
).
4.
D.
Yu
,
H. M.
Ellis
,
E. C.
Lee
,
N. A.
Jenkins
,
N. G.
Copeland
, and
D. L.
Court
,
Proc. Natl. Acad. Sci.
97
,
5978
5983
(
2000
).
5.
H. M.
Ellis
,
D.
Yu
,
T.
DiTizio
, and
D. L.
Court
,
Proc. Natl. Acad. Sci.
98
,
6742
6746
(
2001
).
6.
N.
Costantino
and
D. L.
Court
,
Proc. Natl. Acad. Sci.
100
,
15748
15753
(
2003
).
7.
F. J.
Isaacs
,
P. A.
Carr
,
H. H.
Wang
,
M. J.
Lajoie
,
B.
Sterling
,
L.
Kraal
,
A. C.
Tolonen
,
T. A.
Gianoulis
,
D. B.
Goodman
,
N. B.
Reppas
,
C. J.
Emig
,
D.
Bang
,
S. J.
Hwang
,
M. C.
Jewett
,
J. M.
Jacobson
, and
G. M.
Church
,
Science
333
,
348
353
(
2011
).
8.
M. J.
Lajoie
,
A. J.
Rovner
,
D. B.
Goodman
,
H.-R.
Aerni
,
A. D.
Haimovich
,
G.
Kuznetsov
,
J. A.
Mercer
,
H. H.
Wang
,
P. A.
Carr
,
J. A.
Mosberg
,
N.
Rohland
,
P. G.
Schultz
,
J. M.
Jacobson
,
J.
Rinehart
,
G. M.
Church
, and
F. J.
Isaacs
,
Science
342
,
357
360
(
2013
).
9.
P. A.
Carr
,
H. H.
Wang
,
B.
Sterling
,
F. J.
Isaacs
,
M. J.
Lajoie
,
G.
Xu
,
G. M.
Church
, and
J. M.
Jacobson
,
Nucleic Acids Res.
40
,
e132
(
2012
).
10.
M.
Sandahl
,
S.
Punnamaraju
,
A.
Madison
,
J.
Harrington
,
M.
Royal
,
R.
Fair
,
A.
Eckhardt
,
A.
Sudarsan
, and
M.
Pollack
, in
17th International Conference on Miniaturized Systems for Chemistry and Life Sciences
(
2013
), Vol. 17, pp.
1260
1263
.
11.
N.
Ostrov
,
M.
Landon
,
M.
Guell
,
G.
Kuznetsov
,
J.
Teramoto
,
N.
Cervantes
,
M.
Zhou
,
K.
Singh
,
M. G.
Napolitano
,
M.
Moosburner
,
E.
Shrock
,
B. W.
Pruitt
,
N.
Conway
,
D. B.
Goodman
,
C. L.
Gardner
,
G.
Tyree
,
A.
Gonzales
,
B. L.
Wanner
,
J. E.
Norville
,
M. J.
Lajoie
, and
G. M.
Church
,
Science
353
,
819
822
(
2016
).
12.
R. B.
Fair
,
A.
Khlystov
,
T. D.
Tailor
,
V.
Ivanov
,
R. D.
Evans
,
V.
Srinivasan
,
V. K.
Pamula
,
M. G.
Pollack
,
P. B.
Griffin
, and
J.
Zhou
,
IEEE Des. Test Comput.
24
,
10
24
(
2007
).
13.
R. B.
Fair
,
V.
Srinivasan
,
H.
Ren
,
P.
Paik
,
V. K.
Pamula
, and
M. G.
Pollack
,
IEEE
3
,
779
782
(
2003
).
14.
V.
Srinivasan
,
V. K.
Pamula
, and
R. B.
Fair
,
Lab Chip
4
,
310
315
(
2004
).
15.
W. A.
Schell
,
J. L.
Benton
,
P. B.
Smith
,
M.
Poore
,
J. L.
Rouse
,
D. J.
Boles
,
M. D.
Johnson
,
B. D.
Alexander
,
V. K.
Pamula
,
A. E.
Eckhardt
,
M. G.
Pollack
,
D. K.
Benjamin
, Jr.
,
J. R.
Perfect
, and
T. G.
Mitchell
,
Eur. J. Clin. Microbiol. Infect. Dis.
31
,
2237
2245
(
2012
).
16.
Z.
Hua
,
J. L.
Rouse
,
A. E.
Eckhardt
,
V.
Srinivasan
,
V. K.
Pamula
,
W. A.
Schell
,
J. L.
Benton
,
T. G.
Mitchell
, and
M. G.
Pollack
,
Anal. Chem.
82
,
2310
2316
(
2010
).
17.
D. J.
Boles
,
J. L.
Benton
,
G. J.
Siew
,
M. H.
Levy
,
P. K.
Thwar
,
M. A.
Sandahl
,
J. L.
Rouse
,
L. C.
Perkins
,
A. P.
Sudarsan
,
R.
Jalili
,
V. K.
Pamula
,
V.
Srinivasan
,
R. B.
Fair
,
P. B.
Griffin
,
A. E.
Eckhardt
, and
M. G.
Pollack
,
Anal. Chem.
83
,
8439
8447
(
2011
).
18.
M. G.
Pollack
,
V. K.
Pamula
,
V.
Srinivasan
, and
A. E.
Eckhardt
,
Expert Rev. Mol. Diagn.
11
,
393
407
(
2011
).
19.
I.
Barbulovic-Nad
,
H.
Yang
,
P. S.
Park
, and
A. R.
Wheeler
,
Lab Chip
8
,
519
526
(
2008
).
20.
E. M.
Miller
and
A. R.
Wheeler
,
Anal. Chem.
80
,
1614
1619
(
2008
).
21.
R. S.
Sista
,
A. E.
Eckhardt
,
T.
Wang
,
C.
Graham
,
J. L.
Rouse
,
S. M.
Norton
,
V.
Srinivasan
,
M. G.
Pollack
,
A. A.
Tolun
,
D.
Bali
,
D. S.
Millington
, and
V. K.
Pamula
,
Clin. Chem.
57
,
1444
1451
(
2011
).
22.
V.
Srinivasan
,
V. K.
Pamula
, and
R. B.
Fair
,
Anal. Chim. Acta
507
,
145
150
(
2004
).
23.
R. S.
Sista
,
A. E.
Eckhardt
,
V.
Srinivasan
,
M. G.
Pollack
,
S.
Palanki
, and
V. K.
Pamula
,
Lab Chip
8
,
2188
2196
(
2008
).
24.
A. H. C.
Ng
,
K.
Choi
,
R. P.
Luoma
,
J. M.
Robinson
, and
A. R.
Wheeler
,
Anal. Chem.
84
,
8805
8812
(
2012
).
25.
R.
Sista
,
Z.
Hua
,
P.
Thwar
,
A.
Sudarsan
,
V.
Srinivasan
,
A.
Eckhardt
,
M.
Pollack
, and
V.
Pamula
,
Lab Chip
8
,
2091
2104
(
2008
).
26.
L.
Malic
,
T.
Veres
, and
M.
Tabrizian
,
Biosens. Bioelectron.
24
,
2218
2224
(
2009
).
27.
M. H.
Shamsi
,
K.
Choi
,
A. H. C.
Ng
,
M. D.
Chamberlain
, and
A. R.
Wheeler
,
Biosens. Bioelectron.
77
,
845
852
(
2016
).
28.
G.
Shah
,
A.
Ohta
,
E.
Chiou
,
M.
Wu
, and
C. J.
Kim
,
Lab Chip
9
,
1732
1739
(
2009
).
29.
H.
Moon
,
A. R.
Wheeler
,
R. L.
Garrell
,
J. A.
Loo
, and
C.-J.
Kim
,
Lab Chip
6
,
1213
1219
(
2006
).
30.
M.
Abdelgawad
,
M. W. L.
Watson
, and
A. R.
Wheeler
,
Lab Chip
9
,
1046
1051
(
2009
).
31.
A. C.
Madison
,
M. W.
Royal
, and
R. B.
Fair
,
J. Microelectromech. Syst.
25
,
593
605
(
2016
).
32.
S.
Wang
and
L. J.
Lee
,
Biomicrofluidics
7
,
1
14
(
2013
).
33.
W. J.
Dower
,
J. F.
Miller
, and
C. W.
Ragsdale
,
Nucleic Acids Res.
16
(
13
),
6127
6146
(
1988
).
34.
J. D.
Pedelacq
,
S.
Cabantous
,
T.
Tran
,
T. C.
Terwilliqer
, and
G. S.
Waldo
,
Nat. Biotechnol.
24
,
79
88
(
2006
).
35.
E.
Neumann
and
K.
Rosenheck
,
J. Membr. Biol.
10
,
279
290
(
1972
).
36.
U.
Zimmermann
,
G.
Pilwat
, and
F.
Riemann
,
Biophys. J.
14
,
881
899
(
1974
).
37.
E.
Neumann
,
M.
Schaefer-Ridder
,
Y.
Wang
, and
P. H.
Hofschneider
,
EMBO J.
1
,
841
845
(
1982
).
38.
P. F.
Lurquin
,
Mol. Biotechnol.
7
,
5
35
(
1997
).
39.
B. C.
Brambach
,
A.
Michels
,
J.
Franzke
, and
R.
Kettler
,
Prog. Biophys. Mol. Biol.
111
,
46
54
(
2013
).
40.
T. D.
Xie
,
L.
Sun
, and
T. Y.
Tsong
,
Biophys. J.
58
,
13
19
(
1990
).
41.
T. D.
Xie
and
T. Y.
Tsong
,
Biophys. J.
58
,
897
903
(
1990
).
42.
S. E.
Chuang
,
A. L.
Chen
, and
C. C.
Chao
,
Nucleic Acids Res.
23
,
1641
(
1995
).
43.
A.
Barnett
and
J. C.
Weaver
,
Bioelectrochem. Bioenerg.
25
,
163
182
(
1991
).
44.
J. C.
Neu
and
W.
Krassowska
,
Phys. Rev. E
59
,
3471
3482
(
1999
).
45.
K. A.
DeBruin
and
W.
Krassowska
,
Biophys. J.
77
,
1213
1224
(
1999
).
46.
K. C.
Smith
,
J. C.
Neu
, and
W.
Krassowska
,
Biophys. J.
86
,
2813
2826
(
2004
).
47.
W.
Krassowska
and
P. D.
Filev
,
Biophys. J.
92
,
404
417
(
2007
).

Supplementary Material

You do not currently have access to this content.