We report capillary flow of blood in a microchannel with differential wetting for the separation of a plasma from sample blood and subsequent on-chip detection of glucose present in a plasma. A rectangular polydimethylsiloxane microchannel with hydrophilic walls (on three sides) achieved by using oxygen plasma exposure enables capillary flow of blood introduced at the device inlet through the microchannel. A hydrophobic region (on all four sides) in the microchannel impedes the flow of sample blood, and the accumulated blood cells at the region form a filter to facilitate the separation of a plasma. The modified wetting property of the walls and hence the device performance could be retained for a few weeks by covering the channels with deionised water. The effects of the channel cross-section, exposure time, waiting time, and location and length of the hydrophobic region on the volume of the collected plasma are studied. Using a channel cross-section of 1000 × 400 μm, an exposure time of 2 min, a waiting time of 10 min, and a hydrophobic region of width 1.0 cm located at 10 mm from the device inlet, 450 nl of plasma was obtained within 15 min. The performance of the device was found to be unaffected (provides 450 nl of plasma in 15 min) even after 15 days. The purification efficiency and plasma recovery of the device were measured and found to be comparable with that obtained using the conventional centrifugation process. Detection of glucose at different concentrations in whole blood of normal and diabetic patients was performed (using 5 μl of sample blood within 15 min) to demonstrate the compatibility of the device with integrated detection modules.

1.
The Essentials of Diagnostics whitepaper, DX Insights, January
2012
.
2.
See http://www.loughtonclinic.org/blood-testing.html for the uses of blood test.
3.
M. L.
Kovarik
,
P. C.
Gach
,
D. M.
Ornoff
,
Y.
Wang
,
J.
Balowski
,
L.
Farrag
, and
N. L.
Allbritton
, “
Micro total analysis systems for cell biology and biochemical assays
,”
Anal. Chem.
84
(
2
),
516
540
(
2012
).
4.
I. K.
Dimov
,
L.
Basabe-Desmonts
,
J. L.
Garcia-Cordero
,
B. M.
Ross
,
A. J.
Ricco
, and
L. P.
Lee
, “
Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS)
,”
Lab Chip
11
,
845
850
(
2011
).
5.
X.
Zhang
,
Z.
Wu
,
K.
Wang
,
J.
Zhu
,
J.
Xu
,
X.
Xia
, and
H.
Chen
, “
Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip
,”
Anal. Chem.
84
(
8
),
3780
3786
(
2012
).
6.
H. W.
Hou
,
A. A. S.
Bhagat
,
W. C.
Lee
,
S.
Huang
,
J.
Han
, and
C. T.
Lim
, “
Microfluidic devices for blood fractionation
,”
Micromachines
2
,
319
343
(
2011
).
7.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D.
Di Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
8.
M.
Kersaudy-Kerhoas
and
E.
Sollier
, “
Micro-scale blood plasma separation: From acoustophoresis to egg-beaters
,”
Lab Chip
13
,
3323
3346
(
2013
).
9.
N.
Pamme
, “
Continuous flow separations in microfluidic devices
,”
Lab Chip
7
,
1644
1659
(
2007
).
10.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
,
1
52
(
2014
).
11.
M.
Toner
and
D.
Irimia
, “
Blood-on-a-chip
,”
Annu. Rev. Biomed. Eng.
7
,
77
103
(
2005
).
12.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
, “
Microfluidics for cell separation
,”
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
13.
M.
Kersaudy-Kerhoas
,
R.
Dhariwal
, and
M. P. Y.
Desmulliez
, “
Recent advances in microparticle continuous separation
,”
IET Nanobiotechnol.
2
(
1
),
1
13
(
2008
).
14.
A.
Lenshof
and
T.
Laurell
, “
Continuous separation of cells and particles in microfluidic systems
,”
Chem. Soc. Rev.
39
,
1203
1217
(
2010
).
15.
L. Y.
Yeo
,
J. R.
Friend
, and
D. R.
Arifin
, “
Electric tempest in a teacup: The tea leaf analogy to microfluidic blood plasma separation
,”
Appl. Phys. Lett.
89
,
103516-1
3
(
2006
).
16.
Y.
Nakashima
,
S.
Hata
, and
T.
Yasuda
, “
Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces
,”
Sens. Actuators, B
145
,
561
569
(
2010
).
17.
H.
Jiang
,
X.
Weng
,
C. H.
Chon
,
X.
Wu
, and
D.
Li
, “
A microfluidic chip for blood plasma separation using electro-osmotic flow control
,”
J. Micromech. Microeng.
21
,
085019-1
8
(
2011
).
18.
A.
Lenshof
,
A.
Ahmad-Tajudin
,
K.
Järås
,
A.
Swärd-Nilsson
,
L.
Åberg
,
G.
Marko-Varga
,
J.
Malm
,
H.
Lilja
, and
T.
Laurell
, “
Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics
,”
Anal. Chem.
81
,
6030
6037
(
2009
).
19.
E. P.
Furlani
, “
Magnetophoretic separation of blood cells at the microscale
,”
J. Phys. D: Appl. Phys.
40
,
1313
1319
(
2007
).
20.
M. S.
Maria
,
B. S.
Kumar
,
T. S.
Chandra
, and
A. K.
Sen
, “
Development of a microfluidic device for cell concentration and blood cell-plasma separation
,”
Biomed. Microdevices
17
,
115
(
2015
).
21.
T. A.
Crowley
and
V.
Pizziconi
, “
Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications
,”
Lab Chip
5
,
922
929
(
2005
).
22.
K.
Aran
,
A.
Fok
,
L. A.
Sasso
,
N.
Kamdar
,
Y.
Guan
,
Q.
Sun
,
A.
Undar
, and
J. D.
Zahn
, “
Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery
,”
Lab Chip
11
,
2858
2868
(
2011
).
23.
C.
Blattert
,
R.
Jurischka
,
A.
Schoth
,
P.
Kerth
, and
W.
Menz
, “
Separation of blood cells and plasma in microchannel bend structures
,”
Lab Chip: Plat. Dev. Appl.
5591
,
143
151
(
2004
).
24.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
, “
Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma
,”
Biorheology
43
,
147
159
(
2006
).
25.
J. A.
Davis
,
D. W.
Inglis
,
K. J.
Morton
,
D. A.
Lawrence
,
L. R.
Huang
,
S. Y.
Chou
,
J. C.
Sturm
, and
R. H.
Austin
, “
Deterministic hydrodynamics: Taking blood apart
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
14779
14784
(
2006
).
26.
Y. C.
Kim
,
S.
Kim
,
D.
Kim
,
S.
Park
, and
J.
Park
, “
Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane)
,”
Sens. Actuators, B
145
(
2
),
861
868
(
2010
).
27.
K. K.
Lee
and
C. H.
Ahn
, “
A new on-chip whole blood/plasma separator driven by asymmetric capillary forces
,”
Lab Chip
13
(
16
),
3261
3267
(
2013
).
28.
C.
Szydzik
,
K.
Khoshmanesh
,
A.
Mitchell
, and
C.
Karnutsch
, “
Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis
,”
Biomicrofluidics
9
,
064120
(
2015
).
29.
J. H.
Son
,
S. H.
Lee
,
S.
Hong
,
S.
Park
,
J.
Lee
,
A. M.
Dickey
, and
L. P.
Lee
, “
Hemolysis-free blood plasma separation Hemolysis-free blood plasma separation
,”
Lab Chip
14
,
2287
(
2014
).
30.
C.
Kuroda
,
Y.
Ohki
,
H.
Ashiba
,
M.
Fujimaki
,
K.
Awazu
,
T.
Tanaka
, and
M.
Makishima
, “
Microfluidic sedimentation system for separation of plasma from whole blood
,” in
2014 IEEE Sensors
(
IEEE
,
2014
).
31.
E. M.
Keough
,
W. C.
Mackey
,
R.
Connolly
,
T.
Foxall
,
K.
Ramberg-Laskaris
,
J. L.
McCullough
,
T. F.
O'Donnell
, Jr.
, and
A. D.
Callow
, “
The interaction of blood components with PDMS (polydimethylsiloxane) and LDPE (low-density polyethylene) in a baboon ex vivo arteriovenous shunt model
,”
J. Biomed. Mater. Res.
19
(
5
),
577
587
(
1985
).
32.
K.
Kendall
and
A. D.
Roberts
, “
van der Waals forces influencing adhesion of cells
,”
Philos. Trans. R. Soc. B
370
,
20140078
(
2015
).
33.
O.
Linderkamp
,
H. T.
Versmold
,
K. P.
Riegel
, and
K.
Betke
, “
Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults
,”
Pediatrics
74
(
1
),
45
51
(
1984
).
34.
E. W.
Merril
, “
Rheology of blood
,”
Physiol. Rev.
49
(
4
),
863
888
(
1969
).
35.
J.
Rosina
,
E.
Kvašňák
,
D.
Šuta
,
H.
Kolářová
, and
J.
Málek
, “
Temperature dependence of blood surface tension
,”
Physiol. Res.
56
,
S93
S98
(
2007
).
36.
S.
Bhattacharya
,
A.
Datta
,
J. M.
Berg
, and
S.
Gangopadhyay
, “
Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength
,”
J. Microelectromech. Syst.
14
(
3
),
590
597
(
2005
).
37.
S. H.
Tan
,
N.
Nguyen
,
Y. C.
Chua
, and
T. G.
Kang
, “
Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel
,”
Biomicrofluidics
4
,
032204
(
2010
).
38.
K.
Brakke
, “
The surface evolver (PDF)
,”
Exp. Math.
1
(
2
),
141
165
(
1992
).

Supplementary Material

You do not currently have access to this content.